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Solution 3

1. Strong Maximum Principle Assume u is nonconstant and u(x0) = 0. Let Ω− be the
set of all x, s.t. u(x) < 0. Let BR(y) ⊆ Ω− be a ball touching ∂Ω− \ ∂Ω, which exists as u
is nonconstant and continuous. Then for some point x1 at the boundary of BR(y) it holds
u(x1) = 0. We will show that ∂u

∂ν
(x1) > 0, where ν denotes the outward unit normal of BR(y)

at x1. This is Eberhard1 Hopf’s Lemma. But this is a contradiction to the fact that u attains
its maximum at x1. (By the weak maximum principle, the maximum is 0).
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Let 0 < ρ < R and define the function v(x) = e−αr(x)2 − e−αR2 on the annulus A :=
BR(y) \Bρ(y), where r(x) = |x− y| > ρ. α is a constant, which will be determined later.

Let, for simplicity of calculations, in the following Lu = −∆u+ cu. Then we get:

Lv = −
∑
i

∂

∂xi

∂

∂xi
v + cv

= −
∑
i

∂

∂xi
(−2α(xi − yi)e−αr2) + cv

=
∑
i

2αe−αr2 − 4α2(xi − yi)2e−αr2 + cv

= 2nαe−αr2 − 4α2r2e−αr2 + c(e−αr2 − e−αR2).

As r > ρ > 0, we can choose α big enough s.t. Lv ≤ 0 for all x ∈ A.
For ε > 0 small enough, we have u− u(x1) + εv ≤ 0 on ∂A. This holds, because u(x) < u(x1)
for x ∈ ∂Bρ(y) and v(x) = 0 for x ∈ ∂BR(y). Using Lv ≤ 0 and linearity of L we have

1not to confuse with our Heinz Hopf
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L(u− u(x1) + εv) ≤ −cu(x1) ≤ 0 in the weak sense. Therefore, using the weak maximum
principle, we get u− u(x1) + εv ≤ 0 on all of A.This implies

u(x1)− u(x)
|x1 − x|

≥ εv(x)− εv(x1)
|x1 − x|

,

as v(x1) = 0. Taking the correct limit we therefore get ∂u
∂ν

(x1) ≥ −ε∂v
∂ν

(x1) > 0.

The following is an illustration of the function v:
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2.

(a) We can always write c = c+ − c−. When we then define

L̃u = −
∑
i,j

∂

∂xi
aij

∂u

∂xj
+ c+u

= Lu+ c−u

we see that L̃u ≤ 0, because Lu ≤ 0 and c−u ≤ 0. (Here we need the assumption that u ≤ 0,
taking any other constant would not be enough.) Then we can apply Exercise 1 to this
problem with the operator L̃ and M = 0 to get that u ≡ 0 a.e.

(b) No, this cannot hold in general, as one sees from the eigenfunctions of −∆. There is
u ∈ H1

0 (Ω) satisfying −∆u = λu in Ω, but u is not trivial, i.e. |u| > 0 somewhere in Ω.

3. Let g(x) = u1(x) + u2(x), which is continuous by continuity of u1 and u2. (g comes
from taking u2

2−u2
1

u2−u1
, where possible, and extending continuously.) We want to apply the

maximum principle from Exercise 2 to the operator L = −∆− g(x) and the function u2 − u1.
We immediately see that u2 − u1 = 0 on ∂Ω as both u1 and u2 solve the boundary value
problem. By the assmuptions it also follows u2 − u1 ≤ 0 everywhere on Ω. Lastly we have
L(u2 − u1) = 0, so by Exercise 2, either u2 − u1 ≡ 0 everywhere or u2 − u1 is nowhere 0.
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4. There are several ways to prove this, two are presented here:

Version 1 : Assume ∂u
∂ν

= 0 on all of ∂Ω. Then we can extend u to all of Rn be setting it 0
outside Ω and this extended u will be a function in H1

0 (Rn). This function is a solution of{−∆u = u|u|p−2 in Rn,

u ≥ 0 in Rn.

Restricting this to U ⊆ Rn bounded with Ω ⊂ U we get that by the strong maximum principle
u ≡ 0, because for x ∈ U \ Ω we have u(x) = 0.

Version 2 : Eberhard Hopf’s Lemma tells that if u = 0 on the boundary and u > 0 in the
interior, then ∂u

∂ν
< 0 on the boundary. Which is a contradiction to ∂u

∂ν
= 0. Eberhard Hopf’s

Lemma was proven implicitely in Exercise 1.
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