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Solution 3

1. Strong Maximum Principle Assume u is nonconstant and u(xg) = 0. Let Q~ be the
set of all x, s.t. u(z) < 0. Let Br(y) C 2~ be a ball touching 99~ \ 02, which exists as u
is nonconstant and continuous. Then for some point x; at the boundary of Bg(y) it holds
u(zy) = 0. We will show that 2%(z1) > 0, where v denotes the outward unit normal of Bg(y)
at x;. This is Eberhard! Hopf’s Lemma. But this is a contradiction to the fact that u attains
its maximum at z;. (By the weak maximum principle, the maximum is 0).

Let 0 < p < R and define the function v(z) = e~or@)? _ ¢~ on the annulus A =
Br(y) \ B,(y), where r(z) = |x — y| > p. « is a constant, which will be determined later.

Let, for simplicity of calculations, in the following Lu = —Au + cu. Then we get:
0 0
Lv=—
v ; B &Eiv + cv
0

=— Z 5. (—20(wi = yi)e ") + cv
=) 200" — 40 (z; — ;)% + cv
= 2nae ™" — 402 4 (e — e,

As r > p >0, we can choose a big enough s.t. Lv <0 for all z € A.

For € > 0 small enough, we have u — u(x;) +ev < 0 on OA. This holds, because u(z) < u(z)
for v € 0B,(y) and v(x) = 0 for € 0Bg(y). Using Lv < 0 and linearity of L we have

'not to confuse with our Heinz Hopf
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L(u — u(zy) + ev) < —cu(z1) < 0 in the weak sense. Therefore, using the weak maximum
principle, we get u — u(z1) + v < 0 on all of A.This implies

u(zy) —u(z) _ ev(x) —ev(z)

Y

gy — x|  — |z — x|

as v(z1) = 0. Taking the correct limit we therefore get 2% (z1) > —9(z;) > 0.

The following is an illustration of the function v:

2.

(a) We can always write ¢ = ¢, — c_. When we then define

~ 0 . 0u
Lu = —%axiajw%—@ru

J
=Lu+c_u

we see that Lu < 0, because Lu < 0 and c_u < 0. (Here we need the assumption that v <0,
taking any other constant would not be enough.) Then we can apply Exercise 1 to this
problem with the operator L and M = 0 to get that u = 0 a.e.

(b) No, this cannot hold in general, as one sees from the eigenfunctions of —A. There is
u € H} () satisfying —Awu = A in Q, but u is not trivial, i.e. |u| > 0 somewhere in (2.

3.  Let g(x) = uy(z) + ua(x), which is continuous by continuity of u; and us. (g comes

from taking %, where possible, and extending continuously.) We want to apply the
maximum principle from Exercise 2 to the operator L = —A — g(x) and the function uy — u;.
We immediately see that us — u; = 0 on 9€2 as both u; and uy solve the boundary value
problem. By the assmuptions it also follows uy — u; < 0 everywhere on 2. Lastly we have

L(uy —uy) = 0, so by Exercise 2, either uy — u; = 0 everywhere or uy — u; is nowhere 0.
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4. There are several ways to prove this, two are presented here:

Version 1: Assume g—;‘ = 0 on all of 992. Then we can extend u to all of R™ be setting it 0
outside 2 and this extended u will be a function in H}(R™). This function is a solution of

—Au=ulul/* inR",
u>0 in R™.

Restricting this to U C R™ bounded with Q C U we get that by the strong maximum principle
u =0, because for x € U \ Q we have u(z) = 0.

Version 2: Eberhard Hopf’s Lemma tells that if v = 0 on the boundary and v > 0 in the
interior, then % < 0 on the boundary. Which is a contradiction to % = 0. Eberhard Hopf’s
Lemma was proven implicitely in Exercise 1.
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