Solution 3

1. Strong Maximum Principle Assume u is nonconstant and $u\left(x_{0}\right)=0$. Let Ω^{-}be the set of all x, s.t. $u(x)<0$. Let $B_{R}(y) \subseteq \Omega^{-}$be a ball touching $\partial \Omega^{-} \backslash \partial \Omega$, which exists as u is nonconstant and continuous. Then for some point x_{1} at the boundary of $B_{R}(y)$ it holds $u\left(x_{1}\right)=0$. We will show that $\frac{\partial u}{\partial \nu}\left(x_{1}\right)>0$, where ν denotes the outward unit normal of $B_{R}(y)$ at x_{1}. This is Eberhard ${ }^{1}$ Hopf's Lemma. But this is a contradiction to the fact that u attains its maximum at x_{1}. (By the weak maximum principle, the maximum is 0).

Let $0<\rho<R$ and define the function $v(x)=e^{-\alpha r(x)^{2}}-e^{-\alpha R^{2}}$ on the annulus $A:=$ $B_{R}(y) \backslash B_{\rho}(y)$, where $r(x)=|x-y|>\rho . \alpha$ is a constant, which will be determined later.

Let, for simplicity of calculations, in the following $L u=-\Delta u+c u$. Then we get:

$$
\begin{aligned}
L v & =-\sum_{i} \frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{i}} v+c v \\
& =-\sum_{i} \frac{\partial}{\partial x_{i}}\left(-2 \alpha\left(x_{i}-y_{i}\right) e^{-\alpha r^{2}}\right)+c v \\
& =\sum_{i} 2 \alpha e^{-\alpha r^{2}}-4 \alpha^{2}\left(x_{i}-y_{i}\right)^{2} e^{-\alpha r^{2}}+c v \\
& =2 n \alpha e^{-\alpha r^{2}}-4 \alpha^{2} r^{2} e^{-\alpha r^{2}}+c\left(e^{-\alpha r^{2}}-e^{-\alpha R^{2}}\right) .
\end{aligned}
$$

As $r>\rho>0$, we can choose α big enough s.t. $L v \leq 0$ for all $x \in A$.
For $\varepsilon>0$ small enough, we have $u-u\left(x_{1}\right)+\varepsilon v \leq 0$ on ∂A. This holds, because $u(x)<u\left(x_{1}\right)$ for $x \in \partial B_{\rho}(y)$ and $v(x)=0$ for $x \in \partial B_{R}(y)$. Using $L v \leq 0$ and linearity of L we have

[^0]$L\left(u-u\left(x_{1}\right)+\varepsilon v\right) \leq-c u\left(x_{1}\right) \leq 0$ in the weak sense. Therefore, using the weak maximum principle, we get $u-u\left(x_{1}\right)+\varepsilon v \leq 0$ on all of A.This implies
$$
\frac{u\left(x_{1}\right)-u(x)}{\left|x_{1}-x\right|} \geq \frac{\varepsilon v(x)-\varepsilon v\left(x_{1}\right)}{\left|x_{1}-x\right|}
$$
as $v\left(x_{1}\right)=0$. Taking the correct limit we therefore get $\frac{\partial u}{\partial \nu}\left(x_{1}\right) \geq-\varepsilon \frac{\partial v}{\partial \nu}\left(x_{1}\right)>0$.
The following is an illustration of the function v :

2.
(a) We can always write $c=c_{+}-c_{-}$. When we then define
\[

$$
\begin{aligned}
\tilde{L} u & =-\sum_{i, j} \frac{\partial}{\partial x_{i}} a^{i j} \frac{\partial u}{\partial x_{j}}+c_{+} u \\
& =L u+c_{-} u
\end{aligned}
$$
\]

we see that $\tilde{L} u \leq 0$, because $L u \leq 0$ and $c_{-} u \leq 0$. (Here we need the assumption that $u \leq 0$, taking any other constant would not be enough.) Then we can apply Exercise 1 to this problem with the operator \tilde{L} and $M=0$ to get that $u \equiv 0$ a.e.
(b) No, this cannot hold in general, as one sees from the eigenfunctions of $-\Delta$. There is $u \in H_{0}^{1}(\Omega)$ satisfying $-\Delta u=\lambda u$ in Ω, but u is not trivial, i.e. $|u|>0$ somewhere in Ω.
3. Let $g(x)=u_{1}(x)+u_{2}(x)$, which is continuous by continuity of u_{1} and u_{2}. (g comes from taking $\frac{u_{2}^{2}-u_{1}^{2}}{u_{2}-u_{1}}$, where possible, and extending continuously.) We want to apply the maximum principle from Exercise 2 to the operator $L=-\Delta-g(x)$ and the function $u_{2}-u_{1}$. We immediately see that $u_{2}-u_{1}=0$ on $\partial \Omega$ as both u_{1} and u_{2} solve the boundary value problem. By the assmuptions it also follows $u_{2}-u_{1} \leq 0$ everywhere on Ω. Lastly we have $L\left(u_{2}-u_{1}\right)=0$, so by Exercise 2, either $u_{2}-u_{1} \equiv 0$ everywhere or $u_{2}-u_{1}$ is nowhere 0 .
4. There are several ways to prove this, two are presented here:

Version 1: Assume $\frac{\partial u}{\partial \nu}=0$ on all of $\partial \Omega$. Then we can extend u to all of \mathbb{R}^{n} be setting it 0 outside Ω and this extended u will be a function in $H_{0}^{1}\left(\mathbb{R}^{n}\right)$. This function is a solution of

$$
\left\{\begin{array}{cl}
-\Delta u=u|u|^{p-2} & \text { in } \mathbb{R}^{n}, \\
u \geq 0 & \text { in } \mathbb{R}^{n} .
\end{array}\right.
$$

Restricting this to $U \subseteq \mathbb{R}^{n}$ bounded with $\bar{\Omega} \subset U$ we get that by the strong maximum principle $u \equiv 0$, because for $x \in U \backslash \Omega$ we have $u(x)=0$.

Version 2: Eberhard Hopf's Lemma tells that if $u=0$ on the boundary and $u>0$ in the interior, then $\frac{\partial u}{\partial \nu}<0$ on the boundary. Which is a contradiction to $\frac{\partial u}{\partial \nu}=0$. Eberhard Hopf's Lemma was proven implicitely in Exercise 1.

[^0]: ${ }^{1}$ not to confuse with our Heinz Hopf

