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Solution 4

1. Präsenzaufgabe As a∞ is a constant and therefore in particular radial, we can apply
Remark 2 from the lecture to E∞ to find u ∈M radial, i.e. u(x) = u(|x|), satisfying

E∞(u) = inf
u∈M

E∞(u) = I∞.

As a < a∞ we have for all u ∈M : E(u) < E∞(u). This holds in particular for u, therefore

I ≤ E(u) < E∞(u) = I∞.

2.

(a) Let u ∈Mλ. Then u ∈ L2 ∩ L2∗(Rn) and interpolation yields u ∈ Lp(Rn) for 2 < p < 2∗
as well as the estimate

‖u‖p ≤ ‖u‖
γ
2‖u‖

1−γ
2∗ ,

where γ ∈ (0, 1) is given by 1
p

= γ
2 + 1−γ

2∗ . Applying Sobolev’s embedding we get

‖u‖p ≤ C‖u‖γ2‖∇u‖
1−γ
2 .

Therefore, using that ‖u‖2 = λ
1
2 :

‖u‖pp ≤ C‖∇u‖p(1−γ)
2 .

Solving for γ = 2n−2p(n−2)
np−p(n−2) we obtain p(1− γ) = np−2n

2 < 2, when assuming p < 2n+4
n

.

As a(x) converges for |x| → ∞ we can bound |a(x)| ≤ A globally and therefore

E(u) ≥ ‖∇u‖2
2 − A‖u‖

p
p

≥ ‖∇u‖2
2 − CA‖∇u‖

p(1−γ)
2

and as p(1 − γ) is strictly less than 2 we have E(u) → ∞ if ‖∇u‖2 → ∞. (‖u‖H1 → ∞
implies ‖∇u‖2 →∞ as ‖u‖2 is constant on Mλ.)

(b) Let ε > 0. Recalling that C∞c (Rn) ⊆ H1(Rn) is dense, we can choose u1, u2 ∈ C∞c (Rn)
satisfying

Iλ−α ≤ E(u1) ≤ Iλ−α + ε, ‖u1‖2
2 = λ− α;

Iα,∞ ≤ E∞(u2) ≤ Iα,∞ + ε, ‖u2‖2
2 = α.

Taking x0 ∈ Rn with |x0| large enough we have that the supports of u1(x) and u2,x0(x) =
u2(x− x0) are disjoint. By choosing |x0| even larger if needed, we may additionaly assume∫

Rn
|a(x)− a∞||u2,x0 |

p dx ≤ ε,
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i.e. |E(u2,x0)− E∞(u2,x0)| ≤ ε. Then we get

‖u1 + u2,x0‖
2
2 = ‖u1‖2

2 + ‖u2‖2
2 = λ− α + α = λ,

Iλ ≤ E(u1 + u2,x0) = E(u1) + E(u2,x0) ≤ Iα,∞ + Iλ−α + 3ε.

As ε was arbitrary, we get the desired inequality.

(c) Assume equality, Iλ = Iα,∞ + Iλ−α. Then choose minimizing sequences uk ∈ C∞c (Rn) for
E∞ on Mα, and vk ∈ C∞c (Rn) for E on Mλ−α.

As in (b), choose for each k some xk ∈ Rn with |xk| large enough such that the supports of
uk,xk and vk are disjoint and such that |E(uk,xk)− E∞(uk,xk)| ≤ 1

k
. Then we get

Iλ ≤ E(uk,xk + vk)
= E(uk,xk) + E(vk)
≤ E∞(uk,xk) + 1

k
+ E(vk)

≤ Iα,∞ + Iλ−α + o(1) = Iλ + o(1), k →∞.

Therefore, (uk,xk + vk) is a minimizing sequence for E on Mλ and if we assume |xk| → ∞,
this sequence has no convergent subsequence in Mλ.

(d) Assume w.l.o.g λ = 1. (For general λ, we need to normalize the functions to use the
Concentrations Compactness Lemma, but this will not change the statement.) Let uk be a
minimzing sequence for E onM1. By definition ofM1 we have that µk = u2

k dx are probability
measures. The Concentration-Compactness-Lemma I then states that there is a subsequence,
still denoted µk, such that either i) Compactness or ii) Vanishing or iii) Dichotomy occurs.
We will rule out cases ii) and iii) and show that in case i) there is a convergent subsequence
of the uk.

ii) Assume Vanishing. Given ε > 0, let R be a radius s.t. |a(x)− a∞| ≤ ε for all |x| > R. By
coercivity shown in (a) we have that the minimizing sequence (uk)k is bounded in H1(Rn).
Using ‖uk‖p ≤ C‖uk‖γ2‖∇uk‖

1−γ
2 we get:

E(uk)− E∞(uk) =
∫
Rn

(a(x)− a∞)|uk|p dx

≤ ε‖uk‖pLp(Rn) + 2A‖uk‖pLp(BR)

≤ εC ′ + C ′′‖uk‖pγL2(BR)‖∇uk‖
p(1−γ)
L2(BR),

where A is the bound on |a(x)|. By the vanishing property we have ‖uk‖L2(BR) → 0 for
k →∞. Hence, for ε→ 0, I1,∞ ≤ I1, which contradicts I1 < Iα,∞ + I1−α for α = 1.

iii) Assume Dichotomy with parameter α ∈ (0, 1). Recall from the proof of the Concentration-
Compactness-Lemma that the two dichotomous measures come from restricting the original
measures, so they inherit absolute continuity, i.e. are also given by density function. More
precisely given ε > 0, there exist a sequence of points (xk) ⊂ Rn and Rk →∞ such that for
k large enough:

u
(1)
k := uk|BR(xk),

∣∣∣‖u(1)
k ‖

2
L2 − α

∣∣∣ < ε,

u
(2)
k := uk|Rn\BRk (xk),

∣∣∣‖u(2)
k ‖

2
L2 − (1− α)

∣∣∣ < ε.
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Restricted functions extended by 0 are not generally in H1(Rn) again, therefore we mollify
u

(1)
k and u(2)

k such that their norms stay the same up to an arbitrary small error and such
that the supports lie in a neighbourhood of the original functions.

By scaling with factors close to 1, we obtain

vk := sku
(1)
k ∈Mα, s2

k = α

‖u(1)
k
‖2

2
,

wk := tku
(2)
k ∈M1−α, t2k = 1−α

‖u(2)
k
‖2

2
.

As Rk →∞, we get |E(wk)− E∞(wk)| ≤ ε for k large enough. Then we calculate

Iα + I∞,1−α ≤ E(vk) + E∞(wk)
≤ E(vk) + E(wk) + o(1)
= E(vk + wk) + o(1)

≤ o(1) + s2
k

∫
BR(xk)

|∇uk|2 dx+ t2k

∫
Rn\BRk (xk)

|∇uk|2 dx

− spk
∫
BR(xk)

a(x)|uk|p dx− tpk
∫
Rn\BRk (xk)

a(x)|uk|p dx

≤ o(1) +
(
1 + o(1)

) ∫
Rn
|∇uk|2 dx

−
(
1 + o(1)

) ∫
BR(xk)

a(x)|uk|p dx−
(
1 + o(1)

) ∫
Rn\BRk (xk)

a(x)|uk|p dx

≤
(
1 + o(1)

)
E(uk) + o(1), ε→ 0,

where the last inequality used that

Ĉ ≥
∫
BRk (xk)\BR(xk)

|∇uk|2 dx ≥ 0

as well as ‖uk−(u(1)
k +u(2)

k )‖2
2 = o(1), for ε→ 0 and the inequality ‖u‖p ≤ C‖u‖γ2‖∇u‖

1−γ
2 from

(a), applied to uk− (u(1)
k +u

(2)
k ). The function uk− (u(1)

k +u
(2)
k ) equals uk on BRK (xk)\BR(xk)

and 0 else, so we get∣∣∣∫
BRk\BR(xk)

a(x)|uk|p dx
∣∣∣ ≤ A‖uk‖pLp(BRk\BR(xk))

≤ AC‖uk − (u(1)
k + u

(2)
k )‖pγL2(Rn)‖∇uk‖

p(1−γ)
L2(BRk\BR(xk))

= o(1), ε→ 0.

This implies Iα + I1−α,∞ ≤ I1, a contradiction again.

i) It remains Compactness. By boundedness of (uk) in H1(Rn), we can assume uk w
⇁ u in

H1(Rn). What we want to show is that the limit function u is an element of M1.

We know that we can find xk such that for any ε > 0, there is a radius r with
∫
Br(xk) u

2
k dx ≥

1− ε. First we claim that xk are bounded. Because assume not, then |E(uk)−E∞(uk)| → ε,
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k → ∞, due to boundedness of uk in H1(Rn) and as a(x) → a∞. Indeed, using ‖uk‖p ≤
C‖uk‖γ2‖∇uk‖

1−γ
2 again,

|E(uk)− E∞(uk)| =
∣∣∣∫

Rn
(a− a∞)|uk|p dx

∣∣∣
≤ sup

Br(xk)
|a− a∞|‖uk‖pLp(Br(xk)) + 2A‖uk‖pLp(Rn\Br(xk))

≤ C ′ sup
Br(xk)

|a− a∞|+O(ε).

For ε→ 0, this is a contradiction to I1 < I1,∞.

Therefore, there is R = R(ε) such that BR(0) ⊇ Br(xk) for all k and so
∫
BR(0) u

2
k dx ≥ 1− ε.

As uk w
⇁ u in H1(Rn), we get uk|BR(0)

w
⇁ u|BR(0) in H1(BR(0)). By Rellich’s Theorem,

uk|BR(0) → u|BR(0) strongly in L2(BR(0)).

By the compactness property we get

1− ε ≤ ‖uk|BR(0)‖2
L2(BR(0)) ≤ 1

and so as well for the limit

1− ε ≤ ‖u|BR(0)‖2
L2(BR(0)) ≤ 1.

If we extend u|BR(0) by 0 outside BR(0), then u|BR(ε)(0) → u in L2(Rn) for ε → 0 and so
‖u‖L2 = 1, i.e. u ∈M1.

(e) If a∞ ≤ 0 we first prove that Iλ,∞ = 0 for all λ. Iλ,∞ ≥ 0 follows directly from a∞ ≤ 0.
Therefore we just need to construct a sequence uk s.t. E∞(uk)→ 0. Therefore let u ∈Mλ be
any function and define uk = k−

n
2 u(x

k
).The normalization is such that∫

|uk|2 dx =
∫
k−n|u(x

k
)|2 dx =

∫
u(y) dy = λ,∫

|∇uk|2 dx =
∫
k−n−2|∇u(x

k
)|2 dx k→∞−−−→ 0.

As in (a) we have that ‖uk‖p ≤ C‖∇uk‖1−γ
2 , which tends to 0 for k →∞ and therefore we

get E∞(uk)→ 0.

The inequality Iλ < Iα,∞ + Iλ−α, which is equivalent to the relative compactness of all
minimizing sequences, then reads Iλ < Iλ−α. Inserting α = λ we get Iλ < 0.

Conversely, assume Iλ < 0. If Iλ−α ≥ 0 we are done, so assume also Iλ−α < 0. Let uk ∈Mλ−α
be a minimising sequence for E on Mλ−α. Let s2 = λ

λ−α > 1 be the scaling factor such that
suk ∈Mλ. Then

Iλ ≤ E(suk) =
∫
s2|∇uk|2 − asp|uk|p dx

= sp
∫
s2−p|∇uk|2 − a|uk|p dx < spE(uk).

The latter is due to s2−p < 1 as p > 2. Finally observe that by assumption E(uk) < 0 for
large k, as E(uk) → Iλ−α < 0. Consequently, Iλ < spE(uk) < E(uk), because sp > 1. The
claim Iλ < Iλ−α follows by letting k →∞.
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Remark. If one wants to, one can see that the weak accumulation point u ∈ H1(Rn) obtained
in (d) is a minimizer for E onM1 and the convergence of the (wickedly relabelled) subsequence
(uk)k to u is actually in the strong H1(Rn) topology.

First the proof of the minimality of u which amounts to showing E(u) ≤ lim infk→∞E(uk):
Since ∇uk converges weakly to ∇u in L2(Rn), the w.s.l.s.c. of the norm implies∫

Rn
|∇u|2 dx ≤ lim inf

k→∞

∫
Rn
|∇uk|2 dx.

For the second part, we show convergence: for arbitrary ε > 0, take R > 0 such that∫
BR(0)|uk|

2 dx ≥ 1 − ε (as above). Due to Rellich’s compactness theorem, uk → u in
Lp(BR(0)) as k →∞. Therefore,

lim
k→∞

∫
BR(0)

a(x)|uk|p dx =
∫
BR(0)

a(x)|u|p dx.

Further,∣∣∣ ∫
BR(0)c

a(x)|uk|p dx
∣∣∣ ≤ ‖a‖∞Cp‖uk‖pγL2(BR(0)c)‖∇uk‖

p(1−γ)
2

≤ ‖a‖∞Cpε
pγ
2 sup
l∈N
‖∇ul‖p(1−γ)

2︸ ︷︷ ︸
<∞

,

where the same interpolation has been used as before. The same estimate holds true for u,
which leads to

lim sup
k→∞

∣∣∣ ∫
Rn
a(x)|uk|p dx−

∫
Rn
a(x)|u|p dx

∣∣∣ ≤ C ′ε
pγ
2 .

Since ε > 0 was arbitrary, this leaves us with

lim
k→∞

∫
Rn
a(x)|uk|p dx =

∫
Rn
a(x)|u|p dx.

Finally, we arrive at E(u) ≤ lim infk→∞E(uk) = I1, proving that u is indeed a minimizer of
E on the set M1.

Now, making use of E(uk)→ E(u) as k →∞ (as seen above) and the just shown convergence∫
Rn a(x)|uk|p dx →

∫
Rn a(x)|u|p dx, we get that ‖∇uk‖2

L2(Rn) → ‖∇u‖2
L2(Rn) as k → ∞.

Together with the weak L2-convergence of ∇uk towards ∇u, this proves strong L2-convergence
of ∇uk towards ∇u. Strong convergence of uk towards u in L2(Rn) can be obtained by a
diagonal argument using uk|BR(0) → u|BR(0) strongly in L2(BR(0)) and u|BR(0) → u strongly
in L2(Rn).

This finishes the proof of the statement that u is even an accumulation point of the minimizing
sequence (uk)k∈N in the strong H1 topology.
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