Solution 5

1. Concentration - Compactness.

(a) As $E(\alpha u)=\alpha^{2} E(u)$ for any function u we have $I_{\lambda}=\lambda^{2} I_{1}$ and $I_{1-\lambda}=(1-\lambda)^{2} I_{1}$. So

$$
\begin{aligned}
I_{\lambda}+I_{1-\lambda} & =\left(\lambda^{2}+(1-\lambda)^{2}\right) I_{1} \\
& =\left(1-2 \lambda+2 \lambda^{2}\right) I_{1} .
\end{aligned}
$$

If $\lambda \in(0,1)$, we have $\left(1-2 \lambda+2 \lambda^{2}\right)<1$ and therefore we get

$$
I_{\lambda}+I_{1-\lambda} \begin{cases}<I_{1}, & \text { if } I_{1}>0 \\ >I_{1}, & \text { if } I_{1}<0 \\ =I_{1}, & \text { if } I_{1}=0\end{cases}
$$

Finally we note that $I_{1}<0$ if and only if $I_{\lambda}<0$ for all $\lambda>0$.
(b) Note first that $E(u)$ is bounded from below for $u \in M_{1}$, because the term

$$
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} u(x) u(y) \chi_{B_{R}(0)}(x-y) d x d y
$$

is bounded by 1. Let $u_{k} \in M_{1}$ be a minimising sequence for E. Then $d \mu_{k}=u_{k} d x$ are probability measures, so Theorem 1.3.2. from the lecture (the Concentration - Compactness - Lemma) gives a subsequence (still denoted by u_{k}) satisfying either i) Compactness, ii) Vanishing or iii) Dichotomy.
ii) Assume Vanishing, i.e. u_{k} are nowhere concentrated. Then, as R from the definition of the functional E is a fixed number, we get that $E\left(u_{k}\right)=\int_{\mathbb{R}^{n}} u_{k}^{2} d x+o(1)$ due to

$$
\begin{aligned}
0 & \leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} u_{k}(x) u_{k}(y) \chi_{B_{R}(0)}(x-y) d x d y=\int_{\mathbb{R}^{n}} u(y) \int_{B_{R}(y)} u(x) d x d y \\
& \leq\left\|u_{k}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)} \sup _{y \in \mathbb{R}^{n}} \int_{B_{R}(y)} u_{k}(x) d x \xrightarrow{k \rightarrow \infty} 0 .
\end{aligned}
$$

So for $k \rightarrow \infty$ we see that we have $I_{1} \geq 0$, which is a contradiction (as seen in (a)); so this case cannot occur.
iii) Assume Dichotomy with parameter $\lambda \in(0,1)$. Then there are $r, x_{k} \in \mathbb{R}^{n}$ and $r_{k} \rightarrow \infty$ such that for $u_{k}^{(1)}=\left.u_{k}\right|_{B_{r}\left(x_{k}\right)}$ and $u_{k}^{(2)}=\left.u_{k}\right|_{\mathbb{R}^{n} \backslash B_{r_{k}}\left(x_{k}\right)}$ we have

$$
\begin{array}{r}
\left|\int_{\mathbb{R}^{n}} u_{k}^{(1)} d x-\lambda\right|<\varepsilon, \\
\left|\int_{\mathbb{R}^{n}} u_{k}^{(2)} d x-(1-\lambda)\right|<\varepsilon .
\end{array}
$$

For large enough k the supports of $u_{k}^{(1)}$ and $u_{k}^{(2)}$ are at least distance R apart, so that $E\left(u_{k}^{(1)}+u_{k}^{(2)}\right)=E\left(u_{k}^{(1)}\right)+E\left(u_{k}^{(2)}\right)$.

As the norms of $u_{k}^{(i)}$ are not exactly what we want, we define

$$
\begin{aligned}
v_{k} & :=u_{k}^{(1)} \frac{\lambda}{\left\|u_{k}^{(1)}\right\|_{1}} \in M_{\lambda}, \\
w_{k} & :=u_{k}^{(2)} \frac{1-\lambda}{\left\|u_{k}^{(2)}\right\|_{1}} \in M_{1-\lambda} .
\end{aligned}
$$

Note that $\frac{\lambda}{\left\|u_{k}^{(1)}\right\|_{1}}=1+o(1)$ for $\varepsilon \rightarrow 0$.
Using homogeneity of the functional E we get that $E\left(u_{k}^{(1)}\right)-E\left(v_{k}\right)=\left(1-\left(\frac{\lambda}{\left\|u_{k}^{(1)}\right\|}\right)^{2}\right) E\left(u_{k}\right)$, and similarly for $u_{k}^{(2)}$ and w_{k}.

We can calculate

$$
\begin{aligned}
& E\left(u_{k}^{(1)}\right)+E\left(u_{k}^{(2)}\right)-E\left(u_{k}\right) \\
& \leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}\left(u_{k}(x) u_{k}(y)-u_{k}^{(1)}(x) u_{k}^{(1)}(y)-u_{k}^{(2)}(x) u_{k}^{(2)}(y)\right) \chi(x-y) d x d y \\
& =\int_{\mathbb{R}^{n}} u_{k}(y) \int_{\mathbb{R}^{n}} u_{k}(x) \chi(x-y) d x \\
& \quad-u_{k}^{(1)}(y) \int_{B_{r}} u_{k}(x) \chi(x-y) d x-u_{k}^{(2)}(y) \int_{\mathbb{R}^{n} \backslash B_{r_{k}}} u_{k}(x) \chi(x-y) d x d y \\
& =\int_{\mathbb{R}^{n}} u_{k}(y) \int_{B_{r_{k}} \backslash B_{r}} u_{k}(x) \chi(x-y) d x \\
& \quad+\left(u_{k}-u_{k}^{(1)}\right)(y) \int_{B_{r}} u_{k}(x) \chi(x-y) d x+\left(u_{k}-u_{k}^{(2)}\right)(y) \int_{\mathbb{R}^{n} \backslash B_{r_{k}}} u_{k}(x) \chi(x-y) d x d y \\
& \leq 3\left\|u_{k}\right\|_{L^{1}\left(B_{r_{k}} \backslash B_{r}\right)} .
\end{aligned}
$$

The last estimate is due to

$$
\begin{aligned}
& \operatorname{supp}\left(u_{k}-u_{k}^{(1)}\right) \subset \mathbb{R}^{n} \backslash B_{r}, \quad \operatorname{supp}\left(\int_{B_{r}} u_{k}(x) \chi(x-y) d x\right) \subset B_{r+R} \subset B_{r_{k}}, \\
& \operatorname{supp}\left(u_{k}-u_{k}^{(2)}\right) \subset B_{r_{k}}, \quad \operatorname{supp}\left(\int_{\mathbb{R}^{n} \backslash B_{r_{k}}} u_{k}(x) \chi(x-y) d x\right) \subset \mathbb{R}^{n} \backslash B_{r_{k}-R} \subset \mathbb{R}^{n} \backslash B_{r} .
\end{aligned}
$$

From this it follows

$$
\begin{aligned}
I_{\lambda}+I_{1-\lambda} & \leq \limsup _{k \rightarrow \infty}\left(E\left(v_{k}\right)+E\left(w_{k}\right)\right) \\
& =\limsup _{k \rightarrow \infty}(1+o(1))\left(E\left(u_{k}^{(1)}\right)+E\left(u_{k}^{(2)}\right)\right) \leq(1+o(1)) I_{1}+6 \varepsilon .
\end{aligned}
$$

This holds for all $\varepsilon>0$, so we get again a contradiction to $I_{\lambda}+I_{1-\lambda}>I_{1}$.
i) Therefore it holds Compactness, i.e. $\int_{B_{r}\left(x_{k}\right)} u_{k} d x>1-\varepsilon$ for some $x_{k} \in \mathbb{R}^{n}$ and r large enough. We cannot exclude that $\left|x_{k}\right| \rightarrow \infty$, but if we consider $v_{k}=u_{k, x_{k}}$, the translated function, then we see that $E\left(v_{k}\right)=E\left(u_{k}\right)$, as E is translation invariant, i.e. translating the u_{k} anywhere, we still have a minimising sequence. So we can assume that the functions u_{k} are concentrated around 0 . (We only want to show the existence of a minimiser, not the relative compactness of all minimising sequences.) We then take a weakly converging subsequence on
$B_{r}(0)$ and letting $r \rightarrow \infty$ and taking further subsequences we get a weak limit u with norm 1. We further need that $u \geq 0$ to be an element of M_{1}. This follows from testing for example with χ_{K}, where $K=\{x \mid u(x)<0\}$.

As the u_{k} are a minimising sequence (and as $E \not \equiv \infty$), we have that $\int_{\mathbb{R}^{n}} u_{k}^{2} d x<C<\infty$ and so there is a further subsequence of the u_{k} converging weakly in L^{2} as well. The L^{2}-norm is w.s.l.s.c. Indeed, for any dual f

$$
\left\|u_{k}\right\|\|f\| \geq\left(u_{k}, f\right) \rightarrow(u, f) \quad \Rightarrow\|u\| \leq \liminf _{k \rightarrow \infty}\left\|u_{k}\right\| .
$$

It remains to deal with the term $\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} u(y) u(x) \chi_{B_{R}(0)}(x-y) d x d y$. Using the Camel trick ${ }^{1}$ with $u_{k}(y) \int_{B_{R}(y)} u(x) d x$ we obtain,

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} u_{k}(y) \int_{\mathbb{R}^{n}} u_{k}(x) \chi_{B_{R}(0)}(x-y) d x d y-\int_{\mathbb{R}^{n}} u(y) \int_{\mathbb{R}^{n}} u(x) \chi_{B_{R}(0)}(x-y) d x d y \\
& =\int_{\mathbb{R}^{n}}(u_{k}(y) \underbrace{\int_{B_{R}(y)}\left(u_{k}-u\right)(x) d x}_{g_{k}(y)}) d y-\int_{\mathbb{R}^{n}}\left(u-u_{k}\right)(y)\left(u * \chi_{B_{R}}\right)(y) d y .
\end{aligned}
$$

The convolution $\left(u * \chi_{B_{R}}\right)$ of $u \in L^{2}\left(\mathbb{R}^{n}\right)$ with $\chi_{B_{R}} \in L^{1}\left(\mathbb{R}^{n}\right)$ is again in $L^{2}\left(\mathbb{R}^{n}\right)$ by Young's inequality $\left\|u * \chi_{B_{R}}\right\|_{L^{2}} \leq\|u\|_{L^{2}}\left\|\chi_{B_{R}}\right\|_{L^{1}}$. It therefore serves as test function for the weak L^{2}-convergence $u_{k} \xrightarrow{\mathrm{w}} u$ and leads to

$$
\int_{\mathbb{R}^{n}}\left(u-u_{k}\right)(y)\left(u * \chi_{B_{R}}\right)(y) d y \xrightarrow{k \rightarrow \infty} 0 .
$$

Testing $u_{k} \xrightarrow{\mathbf{w}} u$ with $\chi_{B_{R}(y)} \in L^{2}\left(\mathbb{R}^{n}\right)$ also shows that $g_{k}(\cdot)$ defined above converges pointwise to 0 but not necessarily in L^{2}. However, $2 \geq\left|g_{k}(y)\right|$ serves as integrable majorant when restricting y to a bounded domain. Thus, let $\varepsilon>0$ be fixed and $r>0$ the corresponding compactness radius. By dominated convergence, $\left\|g_{k}\right\|_{L^{2}\left(B_{r}(0)\right)} \rightarrow 0$ as $k \rightarrow \infty$. The scalar products of weakly convergent functions with strongly convergent ones converge to the scalar product of the respective limits. Therefore,

$$
\int_{B_{r}(0)} u_{k}(y) g_{k}(y) d y \xrightarrow{k \rightarrow \infty} 0 .
$$

On the complement, we appeal to compactness and estimate

$$
\int_{\mathbb{R}^{n} \backslash B_{r}(0)} u_{k}(y) g_{k}(y) d y \leq\left(\sup _{\mathbb{R}^{n} \backslash B_{r}(0)}\left|g_{k}\right|\right) \int_{\mathbb{R}^{n} \backslash B_{r}(0)} u_{k} d y \leq 2 \varepsilon .
$$

As a result,

$$
E(u) \leq \liminf _{k \rightarrow \infty} E\left(u_{k}\right)+2 \varepsilon .
$$

Since $\varepsilon>0$ is arbitrary and $\left(u_{k}\right)_{k}$ a minimising sequence for E on M_{1} we conclude, that the minimum is in fact attained at $u \in M_{1}$.

[^0](c) Consider the function
$$
u(x)=\frac{1}{\mathcal{L}^{n}\left(B_{2}(0)\right)} \chi_{B_{2}(0)}(x) .
$$

Then

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} u^{2} d x & =\frac{1}{\mathcal{L}^{n}\left(B_{2}(0)\right)}, \\
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} u(x) u(y) \chi_{B_{R}(0)}(x-y) d x d y & =\left(\int_{\mathbb{R}^{n}} u(x) d x\right)\left(\int_{\mathbb{R}^{n}} u(y) d y\right)=1, \text { if } R>4 .
\end{aligned}
$$

As $\frac{1}{\mathcal{L}^{n}\left(B_{2}(0)\right)}<1$, we see that $E(u)<0$, if $R>4$.

[^0]: ${ }^{1}$ Malba Tahan. "The man who counted - A Collection of Mathematical Adventures", §3 Beasts of Burden.

