Solution 6

1. Baby-Yamabe-Problem.

(a) If $\lambda \leq 0$, coercivity is obvious. Assume therefore $\lambda > 0$.

For all $u \in C_c^{\infty}(\Omega)$ it holds $||u||_2^2 \leq \frac{||\nabla u||_2^2}{\lambda_1}$. By density of $C_c^{\infty}(\Omega) \subseteq H_0^1(\Omega)$ the same holds for $u \in H_0^1(\Omega)$.

Given any $u \in H_0^1(\Omega)$ we therefore get

$$E_{\lambda}(u) = \|\nabla u\|_{2}^{2} - \lambda \|u\|_{2}^{2}$$
$$\geq \left(1 - \frac{\lambda}{\lambda_{1}}\right) \|\nabla u\|_{2}^{2},$$

where the inequality holds, because $\lambda > 0$. If now $\lambda < \lambda_1$, this tends to ∞ , if $||u||_{H_0^1} \to \infty$.

(b) In the following, we assume for simplicity $0 \in \Omega$. (Which we can by translating the coordinate system.) Let $u \in C_c^{\infty}(\Omega)$ be any function and for $k \in \mathbb{N}$ large enough define $v_k(x) := u(kx) \in C_c^{\infty}(\Omega)$. (k needs to be large enough to ensure that the support of v_k is indeed a subset of Ω .) Then we get

$$\begin{split} \|v_k\|_2^2 &= \int_{\Omega} |u(kx)|^2 \, dx = \int_{\Omega} |u(y)|^2 k^{-n} \, dy \\ &= k^{-n} \|u\|_2^2 \\ \|\nabla v_k\|_2^2 &= \int_{\Omega} |\nabla u(kx)|^2 \, dx = \int_{\Omega} k^2 |(\nabla u)(kx)|^2 \, dx = \int_{\Omega} |\nabla u(y)|^2 k^{2-n} \, dy \\ &= k^{2-n} \|\nabla u\|_2^2 \\ \|v_k\|_{2^*}^2 &= \left(\int_{\Omega} |u(kx)|^{2^*} \, dx\right)^{\frac{2}{2^*}} = \left(\int_{\Omega} |u(y)|^{2^*} k^{-n} \, dy\right)^{\frac{2}{2^*}} \\ &= k^{-\frac{2n}{2^*}} \|u\|_{2^*}^2. \end{split}$$

Therefore, using $2 - n = -\frac{2n}{2^*}$:

$$\frac{E_{\lambda}(v_k)}{\|v_k\|_{2^*}^2} = \frac{k^{2-n} \|\nabla u\|_2^2 - \lambda k^{-n} \|u\|_2^2}{k^{-\frac{2n}{2^*}} \|u\|_{2^*}^2}$$
$$= \frac{E_0(u)}{\|u\|_{2^*}^2} - \frac{\lambda k^{-n} \|u\|_2^2}{k^{-\frac{2n}{2^*}} \|u\|_{2^*}^2}.$$

As $n > \frac{2n}{2^*}$, the last term tends to 0 for $k \to \infty$.

By Hölder, the last term is bounded, independently of u. If we now let u_m be a sequence minimising S_0 , we can find k(m), such that

$$\frac{E_{\lambda}(v_{m,k(m)})}{\|v_{m,k(m)}\|_{2^*}^2} \le \frac{E_0(u_m)}{\|u_m\|_{2^*}^2} + \frac{1}{m}.$$

Solution 6, page 1

From this, the first claim follows.

If now $\lambda \leq 0$, we see that $E_{\lambda}(u) \geq E_0(u)$ for all $u \in H_0^1(\Omega)$. Therefore we also get the inequality $S_{\lambda} \geq S_0$.

(c) Let v be the first Laplace eigenfunction, i.e. $\lambda_1 = \frac{\|\nabla v\|_2^2}{\|v\|_2^2}$. Then

$$E_{\lambda}(v) = \|\nabla v\|_{2}^{2} - \lambda \|v\|_{2}^{2} = (\lambda_{1} - \lambda) \|v\|_{2}^{2}$$

$$\Rightarrow S_{\lambda} \leq \frac{E_{\lambda}(v)}{\|v\|_{2^{*}}^{2}} = (\lambda_{1} - \lambda) \frac{\|v\|_{2}^{2}}{\|v\|_{2^{*}}^{2}}.$$

As $\frac{\|v\|_2^2}{\|v\|_{2^*}^2}$ is a constant not depending on λ , we see that this term converges to 0 if $\lambda \to \lambda_1$. As $S_0 > 0$, we can make it smaller than S_0 , by requiring that $\lambda_1 - \lambda < S_0 \frac{\|v\|_{2^*}^2}{\|v\|_2^2}$.

(d) Assume $S_{\lambda} = S_0$.

Let first $\lambda < 0$, in which case $S_{\lambda} = S_0$ is always satisfied. Assume $u_k \in M$ is a minimizing sequence for E_{λ} . Then

$$S_{\lambda} + o(1) = E_{\lambda}(u_k) = E_0(u_k) + \lambda ||u_k||_2^2$$

$$\geq S_0 + \lambda ||u_k||_2^2 = S_{\lambda} + \lambda ||u_k||_2^2, \quad k \to \infty.$$

So we need to have that for every convergent sequence $||u_k||_2^2 \to 0$, i.e. $u_k \to 0$ in L^2 . So in particular there is no limit in M.

Assume $\lambda = 0$. Then there cannot be any convergent minimising sequence in M. Because assume there was $u \in M$ with $E_0(u) = S$. Then we scale u as $v_k(x) = k^{\frac{n-2}{2}}u(kx)$. With the calculations from (b) we get

$$\|v_k\|_{2*}^2 = \|u\|_{2*}^2$$

 $E_0(v_k) = E_0(u) = S.$

Each of these v_k is therefore an element of M and as they are all minimisers E_0 , there are numbers $\alpha_k > 0$ such that $w_k = \alpha_k v_k$ are solutions of

$$\begin{cases} -\Delta w_k = w_k |w_k|^{2^* - 2} & \text{in } \Omega, \\ w_k = 0 & \text{on } \partial \Omega. \end{cases}$$

See Lemma 1.3.2. from the lecture for a proof of this claim.

Using regularity theory for the Laplace operator, we get that $w_k \in C^1(\Omega)$. But for k > 1, the support of w_k is a proper subset of Ω and by the strong maximum principle proven in Problem Set 3, $w_k \equiv 0$, i.e. $u \equiv 0$, which is a contradiction.

Finally let $\lambda > 0$. Let u_k be any minimising sequence for E_0 in M. Then

$$S_0 + o(1) = E_0(u_k) = E_\lambda(u_k) + \lambda ||u_k||_2^2$$

$$\geq E_\lambda(u_k) \geq S_\lambda = S_0, \quad k \to \infty,$$

which implies that u_k is a minimising sequence for E_{λ} as well. But we have shown above that this sequence cannot have a convergent subsequence in M, so we have found a minimising sequence for E_{λ} , which is not relatively compact in M.

Assume now $S_{\lambda} < S_0$.

Let $u_k \in M$ be a sequence minimising E_{λ} on M. By (a) we know that $(u_k)_k$ is bounded in H_0^1 , so there is subsequence which converges weakly in H_0^1 . As $||u_k||_{2^*} = 1$, there is a further subsequence converging weakly in L^{2^*} , too. The unit ball in L^{2^*} is weakly closed (because it is norm closed and convex), so we get that the limit $v \in H_0^1(\Omega)$ satisfies $0 \leq ||v||_{2^*} =: \alpha \leq 1$. Note that the limits of u_k in L^{2^*} agrees with the limit in H_0^1 , because $(H_0^1)^* \supseteq (L^{2^*})^*$.

If $\alpha = 1$, we are done, because then $v \in M$ i.e. we have found a subsequence converging in M. So we just need to rule out $\alpha < 1$.

If $\alpha = 0$, this implies $u_k \stackrel{\text{w}}{\rightarrow} 0$. By Rellich's Theorem then $u_k \to 0$ strongly in $L^2(\Omega)$, which implies

$$E_{\lambda}(u_k) = \|\nabla u_k\|_2^2 - \lambda \|u_k\|_2^2 = \|\nabla u_k\|_2^2 + o(1)$$

= $E_0(u_k) + o(1), \quad k \to \infty.$

But from this we conclude $S_0 \leq S_{\lambda}$, a contradiction.

If $\alpha \in (0,1)$, we use Lemma 1.3.1. and Rellich's Theorem $(u_k \to v \text{ strongly in } L^2(\Omega))$ to calculate

$$E_{\lambda}(u_k) = \|\nabla u_k\|_2^2 - \lambda \|u_k\|_2^2$$

= $\|\nabla v\|_2^2 + \|\nabla (v - u_k)\|_2^2 + o(1) - \lambda \left(\|v\|_2^2 + \underbrace{\|v - u_k\|_2^2}_{\to 0} + o(1)\right)$
= $E_{\lambda}(v) + E_0(v - u_k) + o(1), \quad k \to \infty.$

Lemma 1.3.1. tells us also

 \Rightarrow

$$\begin{aligned} \|u_k\|_{2^*}^{2^*} &= \|v\|_{2^*}^{2^*} + \|v - u_k\|_{2^*}^{2^*} + o(1), \quad k \to \infty, \\ \Rightarrow \|v - u_k\|_{2^*}^{2^*} &= 1 - \alpha^{2^*} + o(1). \end{aligned}$$

Combining these and using $\frac{E_{\lambda}(w)}{\|w\|_{2^*}^2} \ge S_{\lambda}$ for all $w \neq 0$, we get

$$S_{\lambda} = E_{\lambda}(u_{k}) + o(1)$$

= $E_{\lambda}(v) + E_{0}(v - u_{k}) + o(1)$
 $\geq \alpha^{2}S_{\lambda} + ||v - u_{k}||_{2^{*}}^{2}S_{0} + o(1)$
 $\geq \alpha^{2}S_{\lambda} + (1 - \alpha^{2^{*}} + o(1))^{\frac{2}{2^{*}}}S_{0} + o(1)$
 $\geq \alpha^{2}S_{\lambda} + (1 - \alpha^{2^{*}})^{\frac{2}{2^{*}}}S_{0} + o(1), \quad k \to \infty.$
 $(1 - \alpha^{2})S_{\lambda} \geq (1 - \alpha^{2^{*}})^{\frac{2}{2^{*}}}S_{0} > (1 - \alpha^{2})S_{0},$

where the last inequality holds because $\alpha^{2^*} < \alpha^2$. So we arrived at a contradiction to the condition $S_{\lambda} < S_0$.