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Solution 6

1. Baby-Yamabe-Problem.

(a) If λ ≤ 0, coercivity is obvious. Assume therefore λ > 0.

For all u ∈ C∞c (Ω) it holds ‖u‖2
2 ≤

‖∇u‖2
2

λ1
. By density of C∞c (Ω) ⊆ H1

0 (Ω) the same holds for
u ∈ H1

0 (Ω).

Given any u ∈ H1
0 (Ω) we therefore get

Eλ(u) = ‖∇u‖2
2 − λ‖u‖

2
2

≥
(
1− λ

λ1

)
‖∇u‖2

2,

where the inequality holds, because λ > 0. If now λ < λ1, this tends to ∞, if ‖u‖H1
0
→∞.

(b) In the following, we assume for simplicity 0 ∈ Ω. (Which we can by translating the
coordinate system.) Let u ∈ C∞c (Ω) be any function and for k ∈ N large enough define
vk(x) := u(kx) ∈ C∞c (Ω). (k needs to be large enough to ensure that the support of vk is
indeed a subset of Ω.) Then we get

‖vk‖2
2 =

∫
Ω
|u(kx)|2 dx =

∫
Ω
|u(y)|2k−n dy

= k−n‖u‖2
2

‖∇vk‖2
2 =

∫
Ω
|∇u(kx)|2 dx =

∫
Ω
k2|(∇u)(kx)|2 dx =

∫
Ω
|∇u(y)|2k2−n dy

= k2−n‖∇u‖2
2

‖vk‖2
2∗ =

(∫
Ω
|u(kx)|2

∗
dx) 2

2∗ =
(∫

Ω
|u(y)|2

∗
k−n dy

) 2
2∗

= k−
2n
2∗ ‖u‖2

2∗ .

Therefore, using 2− n = −2n
2∗ :

Eλ(vk)
‖vk‖2

2∗

= k2−n‖∇u‖2
2 − λk−n‖u‖

2
2

k−
2n
2∗ ‖u‖2

2∗

= E0(u)
‖u‖2

2∗

− λk−n‖u‖2
2

k−
2n
2∗ ‖u‖2

2∗

.

As n > 2n
2∗ , the last term tends to 0 for k →∞.

By Hölder, the last term is bounded, independently of u. If we now let um be a sequence
minimising S0, we can find k(m), such that

Eλ(vm,k(m))
‖vm,k(m)‖2

2∗

≤ E0(um)
‖um‖2

2∗

+ 1
m
.
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From this, the first claim follows.

If now λ ≤ 0, we see that Eλ(u) ≥ E0(u) for all u ∈ H1
0 (Ω). Therefore we also get the

inequality Sλ ≥ S0.

(c) Let v be the first Laplace eigenfunction, i.e. λ1 = ‖∇v‖2
2

‖v‖2
2
. Then

Eλ(v) = ‖∇v‖2
2 − λ‖v‖

2
2 =

(
λ1 − λ

)
‖v‖2

2

⇒ Sλ ≤
Eλ(v)
‖v‖2

2∗

=
(
λ1 − λ

) ‖v‖2
2

‖v‖2
2∗

.

As ‖v‖2
2

‖v‖2
2∗

is a constant not depending on λ, we see that this term converges to 0 if λ→ λ1.

As S0 > 0, we can make it smaller than S0, by requiring that λ1 − λ < S0
‖v‖2

2∗

‖v‖2
2
.

(d) Assume Sλ = S0.

Let first λ < 0, in which case Sλ = S0 is always satisfied. Assume uk ∈ M is a minimizing
sequence for Eλ. Then

Sλ + o(1) = Eλ(uk) = E0(uk) + λ‖uk‖2
2

≥ S0 + λ‖uk‖2
2 = Sλ + λ‖uk‖2

2, k →∞.

So we need to have that for every convergent sequence ‖uk‖2
2 → 0, i.e. uk → 0 in L2. So in

particular there is no limit in M .

Assume λ = 0. Then there cannot be any convergent minimising sequence in M . Because
assume there was u ∈M with E0(u) = S. Then we scale u as vk(x) = k

n−2
2 u(kx). With the

calculations from (b) we get

‖vk‖2
2∗ = ‖u‖2

2∗

E0(vk) = E0(u) = S.

Each of these vk is therefore an element of M and as they are all minimisers E0, there are
numbers αk > 0 such that wk = αkvk are solutions of{

−∆wk = wk|wk|2
∗−2 in Ω,

wk = 0 on ∂Ω.

See Lemma 1.3.2. from the lecture for a proof of this claim.

Using regularity theory for the Laplace operator, we get that wk ∈ C1(Ω). But for k > 1,
the support of wk is a proper subset of Ω and by the strong maximum principle proven in
Problem Set 3, wk ≡ 0, i.e. u ≡ 0, which is a contradiction.

Finally let λ > 0. Let uk be any minimising sequence for E0 in M . Then

S0 + o(1) = E0(uk) = Eλ(uk) + λ‖uk‖2
2

≥ Eλ(uk) ≥ Sλ = S0, k →∞,
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which implies that uk is a minimising sequence for Eλ as well. But we have shown above that
this sequence cannot have a convergent subsequence in M , so we have found a minimising
sequence for Eλ, which is not relatively compact in M .

Assume now Sλ < S0.

Let uk ∈M be a sequence minimising Eλ on M . By (a) we know that (uk)k is bounded in
H1

0 , so there is subsequence which converges weakly in H1
0 . As ‖uk‖2∗ = 1, there is a further

subsequence converging weakly in L2∗ , too. The unit ball in L2∗ is weakly closed (because it
is norm closed and convex), so we get that the limit v ∈ H1

0 (Ω) satisfies 0 ≤ ‖v‖2∗ =: α ≤ 1.
Note that the limits of uk in L2∗ agrees with the limit in H1

0 , because (H1
0 )∗ ⊇ (L2∗)∗.

If α = 1, we are done, because then v ∈M i.e. we have found a subsequence converging in
M . So we just need to rule out α < 1.

If α = 0, this implies uk w
⇁ 0. By Rellich’s Theorem then uk → 0 strongly in L2(Ω), which

implies

Eλ(uk) = ‖∇uk‖2
2 − λ‖uk‖

2
2 = ‖∇uk‖2

2 + o(1)
= E0(uk) + o(1), k →∞.

But from this we conclude S0 ≤ Sλ, a contradiction.

If α ∈ (0, 1), we use Lemma 1.3.1. and Rellich’s Theorem (uk → v strongly in L2(Ω)) to
calculate

Eλ(uk) = ‖∇uk‖2
2 − λ‖uk‖

2
2

= ‖∇v‖2
2 + ‖∇(v − uk)‖2

2 + o(1)− λ
(
‖v‖2

2 + ‖v − uk‖2
2︸ ︷︷ ︸

→0

+ o(1)
)

= Eλ(v) + E0(v − uk) + o(1), k →∞.

Lemma 1.3.1. tells us also

‖uk‖2∗

2∗ = ‖v‖2∗

2∗ + ‖v − uk‖2∗

2∗ + o(1), k →∞,
⇒ ‖v − uk‖2∗

2∗ = 1− α2∗ + o(1).

Combining these and using Eλ(w)
‖w‖2

2∗
≥ Sλ for all w 6= 0, we get

Sλ = Eλ(uk) + o(1)
= Eλ(v) + E0(v − uk) + o(1)
≥ α2Sλ + ‖v − uk‖2

2∗S0 + o(1)
≥ α2Sλ + (1− α2∗ + o(1)) 2

2∗ S0 + o(1)
≥ α2Sλ + (1− α2∗) 2

2∗ S0 + o(1), k →∞.
⇒ (1− α2)Sλ ≥ (1− α2∗) 2

2∗ S0 > (1− α2)S0,

where the last inequality holds because α2∗
< α2. So we arrived at a contradiction to the

condition Sλ < S0.
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