## Solution 6

## 1. Baby-Yamabe-Problem.

(a) If $\lambda \leq 0$, coercivity is obvious. Assume therefore $\lambda>0$.

For all $u \in C_{c}^{\infty}(\Omega)$ it holds $\|u\|_{2}^{2} \leq \frac{\|\nabla u\|_{2}^{2}}{\lambda_{1}}$. By density of $C_{c}^{\infty}(\Omega) \subseteq H_{0}^{1}(\Omega)$ the same holds for $u \in H_{0}^{1}(\Omega)$.

Given any $u \in H_{0}^{1}(\Omega)$ we therefore get

$$
\begin{aligned}
E_{\lambda}(u) & =\|\nabla u\|_{2}^{2}-\lambda\|u\|_{2}^{2} \\
& \geq\left(1-\frac{\lambda}{\lambda_{1}}\right)\|\nabla u\|_{2}^{2},
\end{aligned}
$$

where the inequality holds, because $\lambda>0$. If now $\lambda<\lambda_{1}$, this tends to $\infty$, if $\|u\|_{H_{0}^{1}} \rightarrow \infty$.
(b) In the following, we assume for simplicity $0 \in \Omega$. (Which we can by translating the coordinate system.) Let $u \in C_{c}^{\infty}(\Omega)$ be any function and for $k \in \mathbb{N}$ large enough define $v_{k}(x):=u(k x) \in C_{c}^{\infty}(\Omega)$. ( $k$ needs to be large enough to ensure that the support of $v_{k}$ is indeed a subset of $\Omega$.) Then we get

$$
\begin{aligned}
\left\|v_{k}\right\|_{2}^{2} & =\int_{\Omega}|u(k x)|^{2} d x=\int_{\Omega}|u(y)|^{2} k^{-n} d y \\
& =k^{-n}\|u\|_{2}^{2} \\
\left\|\nabla v_{k}\right\|_{2}^{2} & =\int_{\Omega}|\nabla u(k x)|^{2} d x=\int_{\Omega} k^{2}|(\nabla u)(k x)|^{2} d x=\int_{\Omega}|\nabla u(y)|^{2} k^{2-n} d y \\
& =k^{2-n}\|\nabla u\|_{2}^{2} \\
\left\|v_{k}\right\|_{2^{*}}^{2} & =\left(\int_{\Omega}|u(k x)|^{2^{*}} d x\right)^{\frac{2}{2^{*}}}=\left(\int_{\Omega}|u(y)|^{2^{*}} k^{-n} d y\right)^{\frac{2}{2^{*}}} \\
& =k^{-\frac{2 n}{2^{*}}\|u\|_{2^{*}}^{2} .}
\end{aligned}
$$

Therefore, using $2-n=-\frac{2 n}{2^{*}}$ :

$$
\begin{aligned}
\frac{E_{\lambda}\left(v_{k}\right)}{\left\|v_{k}\right\|_{2^{*}}^{2}} & =\frac{k^{2-n}\|\nabla u\|_{2}^{2}-\lambda k^{-n}\|u\|_{2}^{2}}{k^{-\frac{2^{2}}{2^{*}}\|u\|_{2^{*}}^{2}}} \\
& =\frac{E_{0}(u)}{\|u\|_{2^{*}}^{2}}-\frac{\lambda k^{-n}\|u\|_{2}^{2}}{k^{-\frac{2 n}{2^{*}}}\|u\|_{2^{*}}^{2}} .
\end{aligned}
$$

As $n>\frac{2 n}{2^{*}}$, the last term tends to 0 for $k \rightarrow \infty$.
By Hölder, the last term is bounded, independently of $u$. If we now let $u_{m}$ be a sequence minimising $S_{0}$, we can find $k(m)$, such that

$$
\frac{E_{\lambda}\left(v_{m, k(m)}\right)}{\left\|v_{m, k(m)}\right\|_{2^{*}}^{2}} \leq \frac{E_{0}\left(u_{m}\right)}{\left\|u_{m}\right\|_{2^{*}}^{2}}+\frac{1}{m} .
$$

From this, the first claim follows.
If now $\lambda \leq 0$, we see that $E_{\lambda}(u) \geq E_{0}(u)$ for all $u \in H_{0}^{1}(\Omega)$. Therefore we also get the inequality $S_{\lambda} \geq S_{0}$.
(c) Let $v$ be the first Laplace eigenfunction, i.e. $\lambda_{1}=\frac{\|\nabla v\|_{2}^{2}}{\|v\|_{2}^{2}}$. Then

$$
\begin{aligned}
& E_{\lambda}(v)=\|\nabla v\|_{2}^{2}-\lambda\|v\|_{2}^{2}=\left(\lambda_{1}-\lambda\right)\|v\|_{2}^{2} \\
& \Rightarrow S_{\lambda} \leq \frac{E_{\lambda}(v)}{\|v\|_{2^{*}}^{2}}=\left(\lambda_{1}-\lambda\right) \frac{\|v\|_{2}^{2}}{\|v\|_{2^{*}}^{2}}
\end{aligned}
$$

As $\frac{\|v\|_{2}^{2}}{\|v\|_{2^{*}}^{2}}$ is a constant not depending on $\lambda$, we see that this term converges to 0 if $\lambda \rightarrow \lambda_{1}$. As $S_{0}>0$, we can make it smaller than $S_{0}$, by requiring that $\lambda_{1}-\lambda<S_{0} \frac{\|v\|_{2^{*}}^{2}}{\|v\|_{2}^{2}}$.
(d) Assume $S_{\lambda}=S_{0}$.

Let first $\lambda<0$, in which case $S_{\lambda}=S_{0}$ is always satisfied. Assume $u_{k} \in M$ is a minimizing sequence for $E_{\lambda}$. Then

$$
\begin{aligned}
S_{\lambda}+o(1) & =E_{\lambda}\left(u_{k}\right)=E_{0}\left(u_{k}\right)+\lambda\left\|u_{k}\right\|_{2}^{2} \\
& \geq S_{0}+\lambda\left\|u_{k}\right\|_{2}^{2}=S_{\lambda}+\lambda\left\|u_{k}\right\|_{2}^{2}, \quad k \rightarrow \infty .
\end{aligned}
$$

So we need to have that for every convergent sequence $\left\|u_{k}\right\|_{2}^{2} \rightarrow 0$, i.e. $u_{k} \rightarrow 0$ in $L^{2}$. So in particular there is no limit in $M$.

Assume $\lambda=0$. Then there cannot be any convergent minimising sequence in $M$. Because assume there was $u \in M$ with $E_{0}(u)=S$. Then we scale $u$ as $v_{k}(x)=k^{\frac{n-2}{2}} u(k x)$. With the calculations from (b) we get

$$
\begin{aligned}
& \left\|v_{k}\right\|_{2 *}^{2}=\|u\|_{2^{*}}^{2} \\
& E_{0}\left(v_{k}\right)=E_{0}(u)=S .
\end{aligned}
$$

Each of these $v_{k}$ is therefore an element of $M$ and as they are all minimisers $E_{0}$, there are numbers $\alpha_{k}>0$ such that $w_{k}=\alpha_{k} v_{k}$ are solutions of

$$
\left\{\begin{aligned}
-\Delta w_{k} & =w_{k}\left|w_{k}\right|^{2^{*}-2} & & \text { in } \Omega, \\
w_{k} & =0 & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

See Lemma 1.3.2. from the lecture for a proof of this claim.
Using regularity theory for the Laplace operator, we get that $w_{k} \in C^{1}(\Omega)$. But for $k>1$, the support of $w_{k}$ is a proper subset of $\Omega$ and by the strong maximum principle proven in Problem Set 3 , $w_{k} \equiv 0$, i.e. $u \equiv 0$, which is a contradiction.

Finally let $\lambda>0$. Let $u_{k}$ be any minimising sequence for $E_{0}$ in $M$. Then

$$
\begin{aligned}
S_{0}+o(1) & =E_{0}\left(u_{k}\right)=E_{\lambda}\left(u_{k}\right)+\lambda\left\|u_{k}\right\|_{2}^{2} \\
& \geq E_{\lambda}\left(u_{k}\right) \geq S_{\lambda}=S_{0}, \quad k \rightarrow \infty,
\end{aligned}
$$

which implies that $u_{k}$ is a minimising sequence for $E_{\lambda}$ as well. But we have shown above that this sequence cannot have a convergent subsequence in $M$, so we have found a minimising sequence for $E_{\lambda}$, which is not relatively compact in $M$.
Assume now $S_{\lambda}<S_{0}$.
Let $u_{k} \in M$ be a sequence minimising $E_{\lambda}$ on $M$. By (a) we know that $\left(u_{k}\right)_{k}$ is bounded in $H_{0}^{1}$, so there is subsequence which converges weakly in $H_{0}^{1}$. As $\left\|u_{k}\right\|_{2^{*}}=1$, there is a further subsequence converging weakly in $L^{2^{*}}$, too. The unit ball in $L^{2^{*}}$ is weakly closed (because it is norm closed and convex), so we get that the limit $v \in H_{0}^{1}(\Omega)$ satisfies $0 \leq\|v\|_{2^{*}}=: \alpha \leq 1$. Note that the limits of $u_{k}$ in $L^{2^{*}}$ agrees with the limit in $H_{0}^{1}$, because $\left(H_{0}^{1}\right)^{*} \supseteq\left(L^{2^{*}}\right)^{*}$.
If $\alpha=1$, we are done, because then $v \in M$ i.e. we have found a subsequence converging in $M$. So we just need to rule out $\alpha<1$.
If $\alpha=0$, this implies $u_{k} \xrightarrow{\mathrm{w}} 0$. By Rellich's Theorem then $u_{k} \rightarrow 0$ strongly in $L^{2}(\Omega)$, which implies

$$
\begin{aligned}
E_{\lambda}\left(u_{k}\right) & =\left\|\nabla u_{k}\right\|_{2}^{2}-\lambda\left\|u_{k}\right\|_{2}^{2}=\left\|\nabla u_{k}\right\|_{2}^{2}+o(1) \\
& =E_{0}\left(u_{k}\right)+o(1), \quad k \rightarrow \infty .
\end{aligned}
$$

But from this we conclude $S_{0} \leq S_{\lambda}$, a contradiction.
If $\alpha \in(0,1)$, we use Lemma 1.3.1. and Rellich's Theorem ( $u_{k} \rightarrow v$ strongly in $L^{2}(\Omega)$ ) to calculate

$$
\begin{aligned}
E_{\lambda}\left(u_{k}\right) & =\left\|\nabla u_{k}\right\|_{2}^{2}-\lambda\left\|u_{k}\right\|_{2}^{2} \\
& =\|\nabla v\|_{2}^{2}+\left\|\nabla\left(v-u_{k}\right)\right\|_{2}^{2}+o(1)-\lambda(\|v\|_{2}^{2}+\underbrace{\left\|v-u_{k}\right\|_{2}^{2}}_{\rightarrow 0}+o(1)) \\
& =E_{\lambda}(v)+E_{0}\left(v-u_{k}\right)+o(1), \quad k \rightarrow \infty
\end{aligned}
$$

Lemma 1.3.1. tells us also

$$
\begin{aligned}
\left\|u_{k}\right\|_{2^{*}}^{2^{*}} & =\|v\|_{2^{*}}^{2^{*}}+\left\|v-u_{k}\right\|_{2^{*}}^{2^{*}}+o(1), \quad k \rightarrow \infty \\
\Rightarrow\left\|v-u_{k}\right\|_{2^{*}}^{2^{*}} & =1-\alpha^{2^{*}}+o(1)
\end{aligned}
$$

Combining these and using $\frac{E_{\lambda}(w)}{\|w\|_{2^{*}}^{2}} \geq S_{\lambda}$ for all $w \neq 0$, we get

$$
\begin{aligned}
S_{\lambda} & =E_{\lambda}\left(u_{k}\right)+o(1) \\
& =E_{\lambda}(v)+E_{0}\left(v-u_{k}\right)+o(1) \\
& \geq \alpha^{2} S_{\lambda}+\left\|v-u_{k}\right\|_{2^{*}}^{2} S_{0}+o(1) \\
& \geq \alpha^{2} S_{\lambda}+\left(1-\alpha^{2^{*}}+o(1) \frac{2}{2^{*}} S_{0}+o(1)\right. \\
& \geq \alpha^{2} S_{\lambda}+\left(1-\alpha^{2^{*}}\right)^{\frac{2}{2^{*}}} S_{0}+o(1), \quad k \rightarrow \infty . \\
\Rightarrow\left(1-\alpha^{2}\right) S_{\lambda} & \geq\left(1-\alpha^{2^{*}}\right)^{\frac{2}{2^{*}}} S_{0}>\left(1-\alpha^{2}\right) S_{0},
\end{aligned}
$$

where the last inequality holds because $\alpha^{2^{*}}<\alpha^{2}$. So we arrived at a contradiction to the condition $S_{\lambda}<S_{0}$.

