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Solution 7

1. Hodge ∗-Operator.

(a) Note first that ∗ det(u) = ∗(det(u) · 1) = det(u) ∧ (∗ 1) = det(u) dx1 ∧ . . . ∧ dxn.

We will give two versions how to prove this exercise.

Version 1: Let e1, . . . , en be the dual basis of dx1, . . . , dxn. Then

du1 ∧ . . . ∧ dun = (du1 ∧ . . . ∧ dun)(e1, . . . , en) dx1 ∧ . . . ∧ dxn

and this coefficient is exactly the determinant:

(du1 ∧ . . . ∧ dun)(e1, . . . , en) =
∑
σ∈Sn

(
sign(σ)(duσ(1) ⊗ . . .⊗ duσ(n))(e1, . . . , en)

)

=
∑
σ∈Sn

(
sign(σ)

n∏
i=1

duσ(i)(ei)
)

=
∑
σ∈Sn

(
sign(σ)

n∏
i=1

∂uσ(i)

∂xi

)
= det(du).

Version 2: In the lecture we have seen that

duk ∧ dul =
∑
i<j

det(Aklij ) dxi ∧ dxj,

where Aklij =
(
∂iu

k ∂ju
k

∂iu
l ∂ju

l

)
. From this, the case n = 2 followed directly. To conclude the

cases n ≥ 2, we proceed by induction. For simplicity of notation, we will in the following
show the step 2 7→ 3. The general case n 7→ n+ 1 works similarly.

We take the product with dum:

duk ∧ dul ∧ dum =
∑
i<j

∑
s

det(Aklij )∂sum dxi ∧ dxj ∧ dxs.

To order this in a similar way as for n = 2, we consider some fixed a < b < c. We have
three terms corresponding to this, namely if (a, b, c) is one of (i, j, s), (i, s, j) or (s, i, j). The
corresponding terms are

det(Aklab)∂cum dxa ∧ dxb ∧ dxc + det(Aklac)∂bum dxa ∧ dxc ∧ dxb+
+ det(Aklbc)∂aum dxb ∧ dxc ∧ dxa

=
(
det(Aklab)∂cum − det(Aklac)∂bum + det(Aklbc)∂aum

)
dxa ∧ dxb ∧ dxc

= det(Aklmabc ) dxa ∧ dxb ∧ dxc,
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where Aklmabc =

∂au
k ∂bu

k ∂cu
k

∂au
l ∂bu

l ∂cu
l

∂au
m ∂bu

m ∂cu
m

 and where the last step used Laplace’s formula for

determinants, because Aklab, Aklac and Aklbc are all minors of Aklmabc . Therefore

duk ∧ dul ∧ dum =
∑
a<b<c

det(Aklmabc ) dxa ∧ dxb ∧ dxc.

From this, the case n = 3 follows directly and we can continue the induction to prove the
claim for all n.

(b) By definition of the Hodge ∗-operator, ∗ dxi = (−1)i+1 dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn, where
d̂xi means omitting dxi. This is because if we let in the definition b = dxi and test with
a = dxj we get

dxj ∧ ∗ dxi = ∗(dxj · dxi) = ∗(δij) = δijdx
1 ∧ . . . ∧ dxn.

Then we can calculate

d∗
(∑

i

aidx
i
)

= ∗ d ∗
(∑

i

aidx
i
)

= ∗ d
(∑

(−1)i+1aidx
1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn

)
= ∗

(∑
i

(−1)i+1 ∂ai
∂xi

dxi ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn
)

= ∗
(∑

i

∂ai
∂xi

dx1 ∧ . . . ∧ dxn
)

=
∑
i

∂ai
∂xi

= div(a1, . . . , an)

(c) First we calculate

d∗f = ∗ d ∗ f
= ∗ d(f dx1 ∧ . . . ∧ dxn)
= ∗(df ∧ dx1 ∧ . . . ∧ dxn) = 0,

therefore ∆f = d∗df . As df = ∂f
∂x1dx

1 + . . .+ ∂f
∂xndx

n is a 1-form we can apply (b) which tells
us

∆f = d∗df = div
( ∂f
∂x1 , . . . ,

∂f

∂xn

)
,

which is the usual Laplacian of f .
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2. Area Functional.

(a) Let Ω ⊂⊂ Rn with n > 1. The argument given in the lecture shows that the area
functional onW 1,1(Ω) is not differentiable at constant u. Let u ∈ W 1,1(Ω) enjoy ‖∇u‖L1(Ω) > 0
and let g : Ω→ R represent ∇u ∈ L1(Ω). The set

Sb = {x ∈ Ω | |g(x)| > Cb := 1
b|Ω|‖∇u‖L1(Ω)}

is defined for b ∈ (0, 1) and has measure |Sb| ≤ b|Ω| due to

‖∇u‖L1(Ω) =
∫

Ω
|g| dx ≥

∫
Sb

|g| dx ≥ |Sb|
b|Ω|‖∇u‖L1(Ω).

Thus, the complement S{
b = Ω \ Sb has measure |S{

b | ≥ (1− b)|Ω|. For any sufficiently small
radius r > 0, there exists x0 ∈ S{

b such that |Br(x0) ∩ S{
b | ≥ (1 − b)|Br|. We consider the

following function vk, its gradient and the given integrals while denoting the n-volume of the
unit ball B1 ⊂ Rn by ωn.

0 ≤ vk(x) =
(
1− k|x|

)
χB 1

k

≤ 1, |∇vk(x)| = k χB 1
k

,

∫
B 1

k

|vk| dx = nωn

∫ 1
k

0

(
1− kr

)
rn−1 dr ≤ ωnk

−n,
∫
B 1

k

|∇vk| dx = ωnk
−n+1.

The function f(x) =
√

1 + |x|2 being convex on Rn satisfies f(x+ h)− f(x) ≥ ∇f(x) · h.

⇒ D(u, v) :=
√

1 + |∇u+∇v|2 −
√

1 + |∇u|2 − ∇u · ∇v√
1 + |∇u|2

≥ 0
for any u, v ∈ W 1,1(Ω). Therefore,∫

Ω
D(u, v) dx ≥

∫
B 1

k
∩S{

b

D(u, v) dx.

We may adapt the coordinate system (each time k) such that x0 is the origin. Since |∇u| ≤ Cb
holds at almost every x ∈ B 1

k
∩ S{

b we may estimate

∇u · ∇v√
1 + |∇u|2

≤ Cb k√
1 + C2

b

=: δbk,

|∇u+∇v|2 ≥ |∇u|2 − 2|∇u||∇v|+ |∇v|2 ≥ −2Cbk + k2,√
1 + |∇u+∇v|2 −

√
1 + |∇u|2 ≥

√
1− 2Cbk + k2 −

√
1 + C2

b ≥ k −
√

2Cbk −
√

1 + C2
b

using concavity crudely via
√

1− x+ y ≥
√
y − x ≥ √y −

√
x. Note that δb < 1 for b fixed.

⇒
∫
B 1

k
∩S{

b

D(u, vk) dx ≥ (1− b)|B1|k−n
(
(1− δb)k −

√
2Cbk −

√
1 + C2

b

)
which asymptotically decreases not faster than k−n+1. as k → ∞. However, ‖vk‖W 1,1 =
O(k−n+1) as k →∞ implying that

E(u+ vk)− E(u)− dE(u)vk
‖vk‖W 1,1(Ω)

does not converge to zero as k →∞.
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(b) If u 7→ dE(u) was continuous in a neighbourhood of u0, then E would be Fréchet-
differentiable at u0. But this was ruled out above, so there are points of discontinuouity.
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