Solution 7

1. Hodge *-Operator.

(a) Note first that $* \operatorname{det}(u)=*(\operatorname{det}(u) \cdot 1)=\operatorname{det}(u) \wedge(* 1)=\operatorname{det}(u) d x^{1} \wedge \ldots \wedge d x^{n}$.

We will give two versions how to prove this exercise.
Version 1: Let e_{1}, \ldots, e_{n} be the dual basis of $d x^{1}, \ldots, d x^{n}$. Then

$$
d u^{1} \wedge \ldots \wedge d u^{n}=\left(d u^{1} \wedge \ldots \wedge d u^{n}\right)\left(e_{1}, \ldots, e_{n}\right) d x^{1} \wedge \ldots \wedge d x^{n}
$$

and this coefficient is exactly the determinant:

$$
\begin{aligned}
\left(d u^{1} \wedge \ldots \wedge d u^{n}\right)\left(e_{1}, \ldots, e_{n}\right) & =\sum_{\sigma \in \mathcal{S}^{n}}\left(\operatorname{sign}(\sigma)\left(d u^{\sigma(1)} \otimes \ldots \otimes d u^{\sigma(n)}\right)\left(e^{1}, \ldots, e^{n}\right)\right) \\
& =\sum_{\sigma \in \mathcal{S}^{n}}\left(\operatorname{sign}(\sigma) \prod_{i=1}^{n} d u^{\sigma(i)}\left(e_{i}\right)\right) \\
& =\sum_{\sigma \in \mathcal{S}^{n}}\left(\operatorname{sign}(\sigma) \prod_{i=1}^{n} \frac{\partial u^{\sigma(i)}}{\partial x^{i}}\right) \\
& =\operatorname{det}(d u) .
\end{aligned}
$$

Version 2: In the lecture we have seen that

$$
d u^{k} \wedge d u^{l}=\sum_{i<j} \operatorname{det}\left(A_{i j}^{k l}\right) d x^{i} \wedge d x^{j},
$$

where $A_{i j}^{k l}=\left(\begin{array}{cc}\partial_{i} u^{k} & \partial_{j} u^{k} \\ \partial_{i} u^{l} & \partial_{j} u^{l}\end{array}\right)$. From this, the case $n=2$ followed directly. To conclude the cases $n \geq 2$, we proceed by induction. For simplicity of notation, we will in the following show the step $2 \mapsto 3$. The general case $n \mapsto n+1$ works similarly.

We take the product with $d u^{m}$:

$$
d u^{k} \wedge d u^{l} \wedge d u^{m}=\sum_{i<j} \sum_{s} \operatorname{det}\left(A_{i j}^{k l}\right) \partial_{s} u^{m} d x^{i} \wedge d x^{j} \wedge d x^{s}
$$

To order this in a similar way as for $n=2$, we consider some fixed $a<b<c$. We have three terms corresponding to this, namely if (a, b, c) is one of $(i, j, s),(i, s, j)$ or (s, i, j). The corresponding terms are

$$
\begin{aligned}
& \operatorname{det}\left(A_{a b}^{k l}\right) \partial_{c} u^{m} d x^{a} \wedge d x^{b} \wedge d x^{c}+\operatorname{det}\left(A_{a c}^{k l}\right) \partial_{b} u^{m} d x^{a} \wedge d x^{c} \wedge d x^{b}+ \\
& \quad+\operatorname{det}\left(A_{b c}^{k l}\right) \partial_{a} u^{m} d x^{b} \wedge d x^{c} \wedge d x^{a} \\
& =\left(\operatorname{det}\left(A_{a b}^{k l}\right) \partial_{c} u^{m}-\operatorname{det}\left(A_{a c}^{k l}\right) \partial_{b} u^{m}+\operatorname{det}\left(A_{b c}^{k l}\right) \partial_{a} u^{m}\right) d x^{a} \wedge d x^{b} \wedge d x^{c} \\
& =\operatorname{det}\left(A_{a b c}^{k l m}\right) d x^{a} \wedge d x^{b} \wedge d x^{c},
\end{aligned}
$$

where $A_{a b c}^{k l m}=\left(\begin{array}{ccc}\partial_{a} u^{k} & \partial_{b} u^{k} & \partial_{c} u^{k} \\ \partial_{a} u^{l} & \partial_{b} u^{l} & \partial_{c} u^{l} \\ \partial_{a} u^{m} & \partial_{b} u^{m} & \partial_{c} u^{m}\end{array}\right)$ and where the last step used Laplace's formula for determinants, because $A_{a b}^{k l}, A_{a c}^{k l}$ and $A_{b c}^{k l}$ are all minors of $A_{a b c}^{k l m}$. Therefore

$$
d u^{k} \wedge d u^{l} \wedge d u^{m}=\sum_{a<b<c} \operatorname{det}\left(A_{a b c}^{k l m}\right) d x^{a} \wedge d x^{b} \wedge d x^{c}
$$

From this, the case $n=3$ follows directly and we can continue the induction to prove the claim for all n.
(b) By definition of the Hodge $*$-operator, $* d x^{i}=(-1)^{i+1} d x^{1} \wedge \ldots \wedge \hat{d x^{i}} \wedge \ldots \wedge d x^{n}$, where $\hat{d x^{i}}$ means omitting $d x^{i}$. This is because if we let in the definition $b=d x^{i}$ and test with $a=d x^{j}$ we get

$$
d x^{j} \wedge * d x^{i}=*\left(d x^{j} \cdot d x^{i}\right)=*\left(\delta_{i j}\right)=\delta_{i j} d x^{1} \wedge \ldots \wedge d x^{n} .
$$

Then we can calculate

$$
\begin{aligned}
d^{*}\left(\sum_{i} a_{i} d x^{i}\right) & =* d *\left(\sum_{i} a_{i} d x^{i}\right) \\
& =* d\left(\sum^{(-1)^{i+1}} a_{i} d x^{1} \wedge \ldots \wedge \hat{d x^{i}} \wedge \ldots \wedge d x^{n}\right) \\
& =*\left(\sum_{i}(-1)^{i+1} \frac{\partial a_{i}}{\partial x^{i}} d x^{i} \wedge d x^{1} \wedge \ldots \wedge \hat{d x^{i}} \wedge \ldots \wedge d x^{n}\right) \\
& =*\left(\sum_{i} \frac{\partial a_{i}}{\partial x^{i}} d x^{1} \wedge \ldots \wedge d x^{n}\right) \\
& =\sum_{i} \frac{\partial a_{i}}{\partial x^{i}} \\
& =\operatorname{div}\left(a_{1}, \ldots, a_{n}\right)
\end{aligned}
$$

(c) First we calculate

$$
\begin{aligned}
d^{*} f & =* d * f \\
& =* d\left(f d x^{1} \wedge \ldots \wedge d x^{n}\right) \\
& =*\left(d f \wedge d x^{1} \wedge \ldots \wedge d x^{n}\right)=0,
\end{aligned}
$$

therefore $\Delta f=d^{*} d f$. As $d f=\frac{\partial f}{\partial x^{1}} d x^{1}+\ldots+\frac{\partial f}{\partial x^{n}} d x^{n}$ is a 1 -form we can apply (b) which tells us

$$
\Delta f=d^{*} d f=\operatorname{div}\left(\frac{\partial f}{\partial x^{1}}, \ldots, \frac{\partial f}{\partial x^{n}}\right),
$$

which is the usual Laplacian of f.

2. Area Functional.

(a) Let $\Omega \subset \subset \mathbb{R}^{n}$ with $n>1$. The argument given in the lecture shows that the area functional on $W^{1,1}(\Omega)$ is not differentiable at constant u. Let $u \in W^{1,1}(\Omega)$ enjoy $\|\nabla u\|_{L^{1}(\Omega)}>0$ and let $g: \Omega \rightarrow \mathbb{R}$ represent $\nabla u \in L^{1}(\Omega)$. The set

$$
S_{b}=\left\{x \in \Omega| | g(x) \mid>C_{b}:=\frac{1}{b|\Omega|}\|\nabla u\|_{L^{1}(\Omega)}\right\}
$$

is defined for $b \in(0,1)$ and has measure $\left|S_{b}\right| \leq b|\Omega|$ due to

$$
\|\nabla u\|_{L^{1}(\Omega)}=\int_{\Omega}|g| d x \geq \int_{S_{b}}|g| d x \geq \frac{\left|S_{b}\right|}{||\Omega|}\|\nabla u\|_{L^{1}(\Omega)}
$$

Thus, the complement $S_{b}^{\complement}=\Omega \backslash S_{b}$ has measure $\left|S_{b}^{\complement}\right| \geq(1-b)|\Omega|$. For any sufficiently small radius $r>0$, there exists $x_{0} \in S_{b}^{\complement}$ such that $\left|B_{r}\left(x_{0}\right) \cap S_{b}^{\complement}\right| \geq(1-b)\left|B_{r}\right|$. We consider the following function v_{k}, its gradient and the given integrals while denoting the n-volume of the unit ball $B_{1} \subset \mathbb{R}^{n}$ by ω_{n}.

$$
\begin{array}{ll}
0 \leq v_{k}(x)=(1-k|x|) \chi_{B_{\frac{1}{k}}} \leq 1, & \left|\nabla v_{k}(x)\right|=k \chi_{B_{\frac{1}{k}}} \\
\int_{B_{\frac{1}{k}}}\left|v_{k}\right| d x=n \omega_{n} \int_{0}^{\frac{1}{k}}(1-k r) r^{n-1} d r \leq \omega_{n} k^{-n}, & \int_{B_{\frac{1}{k}}}\left|\nabla v_{k}\right| d x=\omega_{n} k^{-n+1}
\end{array}
$$

The function $f(x)=\sqrt{1+|x|^{2}}$ being convex on \mathbb{R}^{n} satisfies $f(x+h)-f(x) \geq \nabla f(x) \cdot h$.

$$
\begin{aligned}
& \quad \Rightarrow D(u, v):=\sqrt{1+|\nabla u+\nabla v|^{2}}-\sqrt{1+|\nabla u|^{2}}-\frac{\nabla u \cdot \nabla v}{\sqrt{1+|\nabla u|^{2}}} \geq 0 \\
& \text { for any } u, v \in W^{1,1}(\Omega) \text {. Therefore, }
\end{aligned}
$$

$$
\int_{\Omega} D(u, v) d x \geq \int_{B_{\frac{1}{k}} \cap S_{b}^{\mathrm{C}}} D(u, v) d x .
$$

We may adapt the coordinate system (each time k) such that x_{0} is the origin. Since $|\nabla u| \leq C_{b}$ holds at almost every $x \in B_{\frac{1}{k}} \cap S_{b}^{\complement}$ we may estimate

$$
\begin{gathered}
\frac{\nabla u \cdot \nabla v}{\sqrt{1+|\nabla u|^{2}} \leq \frac{C_{b} k}{\sqrt{1+C_{b}^{2}}}=: \delta_{b} k,} \\
|\nabla u+\nabla v|^{2} \geq|\nabla u|^{2}-2|\nabla u||\nabla v|+|\nabla v|^{2} \geq-2 C_{b} k+k^{2}, \\
\sqrt{1+|\nabla u+\nabla v|^{2}}-\sqrt{1+|\nabla u|^{2}} \geq \sqrt{1-2 C_{b} k+k^{2}}-\sqrt{1+C_{b}^{2}} \geq k-\sqrt{2 C_{b} k}-\sqrt{1+C_{b}^{2}}
\end{gathered}
$$

using concavity crudely via $\sqrt{1-x+y} \geq \sqrt{y-x} \geq \sqrt{y}-\sqrt{x}$. Note that $\delta_{b}<1$ for b fixed.

$$
\Rightarrow \int_{B_{\frac{1}{k}} \cap S_{b}^{\mathrm{C}}} D\left(u, v_{k}\right) d x \geq(1-b)\left|B_{1}\right| k^{-n}\left(\left(1-\delta_{b}\right) k-\sqrt{2 C_{b} k}-\sqrt{1+C_{b}^{2}}\right)
$$

which asymptotically decreases not faster than k^{-n+1}. as $k \rightarrow \infty$. However, $\left\|v_{k}\right\|_{W^{1,1}}=$ $O\left(k^{-n+1}\right)$ as $k \rightarrow \infty$ implying that

$$
\frac{E\left(u+v_{k}\right)-E(u)-d E(u) v_{k}}{\left\|v_{k}\right\|_{W^{1,1}(\Omega)}}
$$

does not converge to zero as $k \rightarrow \infty$.
(b) If $u \mapsto d E(u)$ was continuous in a neighbourhood of u_{0}, then E would be Fréchetdifferentiable at u_{0}. But this was ruled out above, so there are points of discontinuouity.

