Solution 7

1. Hodge *-Operator.

(a) Note first that $* \det(u) = *(\det(u) \cdot 1) = \det(u) \wedge (*1) = \det(u) dx^1 \wedge \ldots \wedge dx^n$. We will give two versions how to prove this exercise.

Version 1: Let e_1, \ldots, e_n be the dual basis of dx^1, \ldots, dx^n . Then

$$du^1 \wedge \ldots \wedge du^n = (du^1 \wedge \ldots \wedge du^n)(e_1, \ldots, e_n) \, dx^1 \wedge \ldots \wedge dx^n$$

and this coefficient is exactly the determinant:

$$(du^{1} \wedge \ldots \wedge du^{n})(e_{1}, \ldots, e_{n}) = \sum_{\sigma \in S^{n}} \left(\operatorname{sign}(\sigma) (du^{\sigma(1)} \otimes \ldots \otimes du^{\sigma(n)})(e^{1}, \ldots, e^{n}) \right)$$
$$= \sum_{\sigma \in S^{n}} \left(\operatorname{sign}(\sigma) \prod_{i=1}^{n} du^{\sigma(i)}(e_{i}) \right)$$
$$= \sum_{\sigma \in S^{n}} \left(\operatorname{sign}(\sigma) \prod_{i=1}^{n} \frac{\partial u^{\sigma(i)}}{\partial x^{i}} \right)$$
$$= \det(du).$$

Version 2: In the lecture we have seen that

$$du^k \wedge du^l = \sum_{i < j} \det(A^{kl}_{ij}) \, dx^i \wedge dx^j,$$

where $A_{ij}^{kl} = \begin{pmatrix} \partial_i u^k & \partial_j u^k \\ \partial_i u^l & \partial_j u^l \end{pmatrix}$. From this, the case n = 2 followed directly. To conclude the cases $n \ge 2$, we proceed by induction. For simplicity of notation, we will in the following show the step $2 \mapsto 3$. The general case $n \mapsto n+1$ works similarly.

We take the product with du^m :

. .

$$du^k \wedge du^l \wedge du^m = \sum_{i < j} \sum_s \det(A^{kl}_{ij}) \partial_s u^m \, dx^i \wedge dx^j \wedge dx^s.$$

To order this in a similar way as for n = 2, we consider some fixed a < b < c. We have three terms corresponding to this, namely if (a, b, c) is one of (i, j, s), (i, s, j) or (s, i, j). The corresponding terms are

$$\det(A_{ab}^{kl})\partial_c u^m \, dx^a \wedge dx^b \wedge dx^c + \det(A_{ac}^{kl})\partial_b u^m \, dx^a \wedge dx^c \wedge dx^b + \\ + \det(A_{bc}^{kl})\partial_a u^m \, dx^b \wedge dx^c \wedge dx^a \\ = \left(\det(A_{ab}^{kl})\partial_c u^m - \det(A_{ac}^{kl})\partial_b u^m + \det(A_{bc}^{kl})\partial_a u^m\right) dx^a \wedge dx^b \wedge dx^c \\ = \det(A_{abc}^{klm}) \, dx^a \wedge dx^b \wedge dx^c,$$

where $A_{abc}^{klm} = \begin{pmatrix} \partial_a u^k & \partial_b u^k & \partial_c u^k \\ \partial_a u^l & \partial_b u^l & \partial_c u^l \\ \partial_a u^m & \partial_b u^m & \partial_c u^m \end{pmatrix}$ and where the last step used Laplace's formula for determinants, because A_{ab}^{kl} , A_{ac}^{kl} and A_{bc}^{kl} are all minors of A_{abc}^{klm} . Therefore

$$du^k \wedge du^l \wedge du^m = \sum_{a < b < c} \det(A^{klm}_{abc}) \, dx^a \wedge dx^b \wedge dx^c.$$

From this, the case n = 3 follows directly and we can continue the induction to prove the claim for all n.

(b) By definition of the Hodge *-operator, $* dx^i = (-1)^{i+1} dx^1 \wedge \ldots \wedge dx^i \wedge \ldots \wedge dx^n$, where dx^i means omitting dx^i . This is because if we let in the definition $b = dx^i$ and test with $a = dx^j$ we get

$$dx^{j} \wedge * dx^{i} = *(dx^{j} \cdot dx^{i}) = *(\delta_{ij}) = \delta_{ij}dx^{1} \wedge \ldots \wedge dx^{n}.$$

Then we can calculate

$$d^* \left(\sum_i a_i dx^i\right) = *d * \left(\sum_i a_i dx^i\right)$$

= $*d \left(\sum (-1)^{i+1} a_i dx^1 \wedge \dots \wedge dx^i \wedge \dots \wedge dx^n\right)$
= $* \left(\sum_i (-1)^{i+1} \frac{\partial a_i}{\partial x^i} dx^i \wedge dx^1 \wedge \dots \wedge dx^i \wedge \dots \wedge dx^n\right)$
= $* \left(\sum_i \frac{\partial a_i}{\partial x^i} dx^1 \wedge \dots \wedge dx^n\right)$
= $\sum_i \frac{\partial a_i}{\partial x^i}$
= $\operatorname{div}(a_1, \dots, a_n)$

(c) First we calculate

$$d^*f = *d * f$$

= *d(f dx¹ \land ... \land dxⁿ)
= *(df \land dx¹ \land ... \land dxⁿ) = 0,

therefore $\Delta f = d^* df$. As $df = \frac{\partial f}{\partial x^1} dx^1 + \ldots + \frac{\partial f}{\partial x^n} dx^n$ is a 1-form we can apply (b) which tells us

$$\Delta f = d^* df = \operatorname{div}\left(\frac{\partial f}{\partial x^1}, \dots, \frac{\partial f}{\partial x^n}\right),$$

which is the usual Laplacian of f.

2. Area Functional.

(a) Let $\Omega \subset \mathbb{R}^n$ with n > 1. The argument given in the lecture shows that the area functional on $W^{1,1}(\Omega)$ is not differentiable at constant u. Let $u \in W^{1,1}(\Omega)$ enjoy $\|\nabla u\|_{L^1(\Omega)} > 0$ and let $g: \Omega \to \mathbb{R}$ represent $\nabla u \in L^1(\Omega)$. The set

$$S_b = \{ x \in \Omega \mid |g(x)| > C_b := \frac{1}{b|\Omega|} \|\nabla u\|_{L^1(\Omega)} \}$$

is defined for $b \in (0, 1)$ and has measure $|S_b| \leq b |\Omega|$ due to

$$\|\nabla u\|_{L^{1}(\Omega)} = \int_{\Omega} |g| \, dx \ge \int_{S_{b}} |g| \, dx \ge \frac{|S_{b}|}{b|\Omega|} \|\nabla u\|_{L^{1}(\Omega)}.$$

Thus, the complement $S_b^{\complement} = \Omega \setminus S_b$ has measure $|S_b^{\complement}| \ge (1-b)|\Omega|$. For any sufficiently small radius r > 0, there exists $x_0 \in S_b^{\complement}$ such that $|B_r(x_0) \cap S_b^{\complement}| \ge (1-b)|B_r|$. We consider the following function v_k , its gradient and the given integrals while denoting the *n*-volume of the unit ball $B_1 \subset \mathbb{R}^n$ by ω_n .

$$0 \le v_k(x) = \left(1 - k|x|\right) \chi_{B_{\frac{1}{k}}} \le 1, \qquad |\nabla v_k(x)| = k \, \chi_{B_{\frac{1}{k}}},$$

$$\int_{B_{\frac{1}{k}}} |v_k| \, dx = n\omega_n \int_0^{\frac{1}{k}} (1 - kr) r^{n-1} \, dr \le \omega_n k^{-n}, \qquad \int_{B_{\frac{1}{k}}} |\nabla v_k| \, dx = \omega_n k^{-n+1}.$$

The function $f(x) = \sqrt{1 + |x|^2}$ being convex on \mathbb{R}^n satisfies $f(x+h) - f(x) \ge \nabla f(x) \cdot h$.

$$\Rightarrow D(u,v) := \sqrt{1 + |\nabla u + \nabla v|^2} - \sqrt{1 + |\nabla u|^2} - \frac{\nabla u \cdot \nabla v}{\sqrt{1 + |\nabla u|^2}} \ge 0$$

for any $u, v \in W^{1,1}(\Omega)$. Therefore,

$$\int_{\Omega} D(u,v) \, dx \geq \int_{B_{\frac{1}{k}} \cap S_b^\complement} D(u,v) \, dx$$

We may adapt the coordinate system (each time k) such that x_0 is the origin. Since $|\nabla u| \leq C_b$ holds at almost every $x \in B_{\frac{1}{k}} \cap S_b^{\complement}$ we may estimate

$$\frac{\nabla u \cdot \nabla v}{\sqrt{1 + |\nabla u|^2}} \leq \frac{C_b k}{\sqrt{1 + C_b^2}} =: \delta_b k,$$

$$|\nabla u + \nabla v|^2 \geq |\nabla u|^2 - 2|\nabla u| |\nabla v| + |\nabla v|^2 \geq -2C_b k + k^2,$$

$$\sqrt{1 + |\nabla u + \nabla v|^2} - \sqrt{1 + |\nabla u|^2} \geq \sqrt{1 - 2C_b k + k^2} - \sqrt{1 + C_b^2} \geq k - \sqrt{2C_b k} - \sqrt{1 + C_b^2}$$
using concavity crudely via $\sqrt{1 - x + u} \geq \sqrt{u - x} \geq \sqrt{u} - \sqrt{x}$. Note that $\delta_t < 1$ for h fixe

using concavity crudely via $\sqrt{1-x+y} \ge \sqrt{y-x} \ge \sqrt{y} - \sqrt{x}$. Note that $\delta_b < 1$ for b fixed.

$$\Rightarrow \int_{B_{\frac{1}{k}} \cap S_b^{\complement}} D(u, v_k) \, dx \ge (1-b) |B_1| k^{-n} \Big((1-\delta_b) k - \sqrt{2C_b k} - \sqrt{1+C_b^2} \Big)$$

which asymptotically decreases not faster than k^{-n+1} . as $k \to \infty$. However, $||v_k||_{W^{1,1}} = O(k^{-n+1})$ as $k \to \infty$ implying that

$$\frac{E(u+v_k) - E(u) - dE(u)v_k}{\|v_k\|_{W^{1,1}(\Omega)}}$$

does not converge to zero as $k \to \infty$.

(b) If $u \mapsto dE(u)$ was continuous in a neighbourhood of u_0 , then E would be Fréchetdifferentiable at u_0 . But this was ruled out above, so there are points of discontinuouity.