Solution 8

1. Präsenzaufgabe.

(a) As $\langle d E(v), v\rangle=\|\nabla v\|_{2}^{2}-\|v\|_{p}^{p}$ for all $v \in H_{0}^{1}(\Omega)$, we need to find a zero of the continuous map $f:(0,1) \rightarrow \mathbb{R}, s \mapsto\|\nabla \gamma(s)\|_{2}^{2}-\|\gamma(s)\|_{p}^{p}$. As $E(y(1))=\frac{1}{2}\|\nabla u\|_{2}^{2}-\frac{1}{p}\|u\|_{p}^{p}<0$, we have that for s close to 1: $f(s)<0$.
By Sobolev embedding we have $\|\gamma(s)\|_{p}^{p} \leq c\|\nabla \gamma(s)\|_{2}^{p}$ and therefore

$$
\begin{aligned}
f(s) & \geq\|\nabla \gamma(s)\|_{2}^{2}-c\|\nabla \gamma(s)\|_{2}^{p} \\
& =\|\nabla \gamma(s)\|_{2}^{2}\left(1-c\|\nabla \gamma(s)\|_{2}^{p-2}\right) .
\end{aligned}
$$

As $\gamma(0)=0$ we see that $f(s)>0$ for s small enough. Using the mean value Theorem we then find some $s_{\gamma} \in(0,1)$ with $f\left(s_{\gamma}\right)=0$, i.e. $\left\|\nabla \gamma\left(s_{\gamma}\right)\right\|_{2}^{2}=\left\|\gamma\left(s_{\gamma}\right)\right\|_{p}^{p}$.
(b) We can find the supremum by differentiating the map $\lambda \mapsto E(\lambda v)$.

$$
\begin{aligned}
E(\lambda v) & =\frac{1}{2} \lambda^{2}\|\nabla v\|_{2}^{2}-\frac{1}{p} \lambda^{p}\|v\|_{p}^{p} \\
& =\frac{1}{2} \lambda^{2}\|\nabla v\|_{2}^{2}-\frac{1}{p} \lambda^{p} \\
\Rightarrow \frac{d}{d \lambda} E(\lambda v) & =\lambda\|\nabla v\|_{2}^{2}-\lambda^{p-1} .
\end{aligned}
$$

$\lambda=0$ gives the local minimum 0 , so we can assume $\lambda \neq 0$ and then we get $\lambda=\|\nabla v\|_{2}^{\frac{2}{p-2}}$. This needs to be the maximum, because $E(\lambda v)>0$ for small λ whereas $E(\lambda v) \rightarrow-\infty, \lambda \rightarrow \infty$. Therefore

$$
\begin{aligned}
\sup _{0<\lambda<\infty} E(\lambda v) & =\frac{1}{2}\|\nabla v\|_{2}^{\frac{4}{p-2}}\|\nabla v\|_{2}^{2}-\frac{1}{p}\|\nabla v\|_{2}^{\frac{2 p}{p-2}} \\
& =\left(\frac{1}{2}-\frac{1}{p}\right)\|\nabla v\|_{2}^{\frac{2 p}{p-2}} .
\end{aligned}
$$

(c) To prove this identity we will show that for all $\gamma \in \Gamma$ it holds:

$$
\begin{equation*}
\sup _{0<\lambda} E(\lambda \bar{u}) \leq \sup _{0 \leq s \leq 1} E(\gamma(s)) . \tag{1}
\end{equation*}
$$

From this we get the inequality " \leq ". The other inequality follows when noting that for N large enough, $s \mapsto s N \bar{u}$ is a path in Γ.

To prove (1) we calculate on one hand

$$
\sup _{0<\lambda} E(\lambda \bar{u})=\frac{p-2}{2 p}\|\nabla \bar{u}\|_{2}^{\frac{2 p}{p-2}}=\frac{p-2}{2 p} \alpha^{\frac{p}{p-2}}
$$

and on the other hand

$$
\sup _{0 \leq s \leq 1} E(\gamma(s)) \geq E(w)=\frac{p-2}{2 p}\|\nabla w\|_{2}^{2}
$$

where $w=\gamma\left(s_{\gamma}\right)$ as calculated in (a). It further holds

$$
\begin{aligned}
\alpha & \leq\left\|\frac{\nabla w}{\|w\|_{p}}\right\|_{2}^{2}=\frac{\|\nabla w\|_{2}^{2}}{\|w\|_{p}^{2}} \\
& =\frac{\|\nabla w\|_{2}^{2}}{\|\nabla w\|_{2}^{\frac{4}{p}}}=\|\nabla w\|^{\frac{2 p-4}{p}} .
\end{aligned}
$$

Combining these (in)equalities leads to (1).
(d) Let \bar{u} be the element considered in (c). Then it holds

$$
\begin{equation*}
\beta=\sup E(\lambda \bar{u})=\frac{2-p}{2 p}\|\nabla \bar{u}\|_{2}^{\frac{2 p}{p-2}}=\frac{2-p}{2 p} \alpha^{\frac{p}{p-2}}, \tag{2}
\end{equation*}
$$

which connects α and β. Let now $\tilde{u}=\frac{u}{\|u\|_{p}}$. As $d E(u)=0$, we have in particular $\langle d E(u), u\rangle=$ 0 , i.e.

$$
\|u\|_{p}^{p}=\|\nabla u\|_{2}^{2}=\frac{2 p}{p-2} E(u)
$$

as in (c). Therefore

$$
\begin{aligned}
\|\nabla \tilde{u}\|_{2}^{2} & =\frac{1}{\|\tilde{u}\|_{p}^{2}}\|\nabla \tilde{u}\|_{2}^{2}=\left(\frac{2 p}{p-2} E(u)\right)^{1-\frac{2}{p}} \\
& =\left(\frac{2 p}{p-2} \beta\right)^{\frac{p-2}{p}}=\alpha
\end{aligned}
$$

where the last equality follows from (2).

2. Cerami.

(a) At each $u \in \tilde{X}$ we can find a vector satisfying the conditions. (This can be seen by taking a unit vector v almost maximising $\langle d E(u), v\rangle$ and then normalising it to have norm almost $1+\|u\|$. .) By the strict inequalities, the same vector will satisfy the conditions for all $v \in U_{u}$, where U_{u} is a small neighbourhood of u. Thus we can cover \tilde{X} by sets U_{u}. Then take a locally finite refinement of this cover and a Lipschitz continuous partition of unity subordinate to the refinement as in the lecture to get a global vectorfield, which is locally Lipschitz continuous.

Note that we can take the pseudo gradient vector field constructed in the lecture and multiply it with $\left(1+\|u\|_{X}\right)$ at each $u \in X$ to get exactly the desired vector field for this exercise.
(b) Given $\bar{\varepsilon}>0$, let $0<\varepsilon<\bar{\varepsilon}$ be such that $\varepsilon \leq \frac{1}{4} \delta$. Let $\tau: \mathbb{R} \rightarrow[0,1]$ be a smooth with $\tau(s)=1$ if $|s-\beta|<\varepsilon$ and $\tau(s)=0$ if $|s-\beta|>2 \varepsilon$. Let $e: X \rightarrow X$ be defined by

$$
e(u)= \begin{cases}-\tau(E(u)) \tilde{e}^{C}(u), & \text { if } d E(u) \neq 0, \text { i.e. } u \in \tilde{X}, \\ 0, & \text { if } d E(u)=0 .\end{cases}
$$

Local Lipschitz continuity in \tilde{X} is inherited from the vector field \tilde{e}^{C} given in (a). Whenever $d E(u)=0$, the assumption $N_{\beta, \delta}=\emptyset$ implies $|E(u)-\beta| \geq \delta \geq 4 \varepsilon>2 \varepsilon$ such that $\tau \circ E$ and hence e vanish in some neighbourhood of u which is most Lipschitz. Therefore, the initial value problem

$$
\left\{\begin{aligned}
\frac{\partial}{\partial t} \Phi(u, t) & =e(\Phi(u, t)) \\
\Phi(u, 0) & =u
\end{aligned}\right.
$$

has a solution $\Phi: X \times(-\tau, \tau) \rightarrow X$ at least for small $\tau>0$. Moreover, given $t \in(-\tau, \tau)$

$$
\begin{aligned}
\|\Phi(u, t)\|-\|u\| \leq\|\Phi(u, t)-\Phi(u, 0)\| & =\left\|\int_{0}^{t} e(\Phi(u, t)) d s\right\| \\
& \leq \int_{0}^{t}\left\|\tilde{e}^{C}(\Phi(u, t))\right\| d s \leq \int_{0}^{t} 1+\|\Phi(u, t)\| d s
\end{aligned}
$$

By Gronwall's lemma $\|\Phi(u, t)\| \leq(\|u\|+\tau) e^{2 t}$. Therefore, a solution $\Phi: X \times \mathbb{R} \rightarrow X$ exists.
(c) The map $t \mapsto E(\Phi(u, t))$ is non-increasing, since

$$
\begin{aligned}
\frac{d}{d t} E(\Phi(u, t)) & =\left\langle d E(\Phi(u, t)), \frac{\partial}{\partial t} \Phi(u, t)\right\rangle \\
& =-\tau(E(\Phi(u, t)))\left\langle d E(\Phi(u, t)), \tilde{e}^{C}(\Phi(u, t))\right\rangle \leq 0 .
\end{aligned}
$$

To show the inclusion $\Phi\left(\mathrm{E}_{\beta+\varepsilon}, 1\right) \subseteq \mathrm{E}_{\beta-\varepsilon}$, consider $u \in \mathrm{E}_{\beta+\varepsilon}:=\{u \in X \mid E(u)<\beta+\varepsilon\}$. Whenever $E(\Phi(u, t))<\beta-\varepsilon$ for some $t \in(0,1)$, then also $E(\Phi(u, 1))<\beta-\varepsilon$, as $E(\Phi(u, \cdot))$ is non-increasing. Thus assume $E(\Phi(u, t)) \geq \beta-\varepsilon$ for all $t \in(0,1]$ towards a contradiction.

Clearly, also $E(\Phi(u, t)) \leq E(\Phi(u, 0))=E(u)<\beta+\varepsilon$ holds, such that $|E(\Phi(u, t))-\beta|<\varepsilon<\delta$. Since $N_{\beta, \delta}$ is assumed to be empty, $\|d E(\Phi(u, t))\|_{X^{*}}(1+\|\Phi(u, t)\|) \geq \delta$ follows necessarily. By definition, $\tau(\Phi(u, t))=1$ for all $t \in(0,1]$ and

$$
\begin{aligned}
\frac{d}{d t} E(\Phi(u, t)) & =-\left\langle d E(\Phi(u, t)), \tilde{e}^{C}(\Phi(u, t))\right\rangle \\
& <-\frac{1}{2}\|d E(\Phi(u, t))\|_{X^{*}}(1+\|\Phi(u, t)\|) \leq-\frac{1}{2} \delta \leq 2 \varepsilon
\end{aligned}
$$

Consequently, $E(\Phi(u, 1)) \leq E(u)-2 \varepsilon<\beta-\varepsilon$ in contradiction to the assumption.

