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1. Präsenzaufgabe.

(a) As 〈dE(v), v〉 = ‖∇v‖2
2−‖v‖

p
p for all v ∈ H1

0 (Ω), we need to find a zero of the continuous
map f : (0, 1)→ R, s 7→ ‖∇γ(s)‖2

2 − ‖γ(s)‖pp. As E(y(1)) = 1
2‖∇u‖

2
2 −

1
p
‖u‖pp < 0, we have

that for s close to 1: f(s) < 0.

By Sobolev embedding we have ‖γ(s)‖pp ≤ c‖∇γ(s)‖p2 and therefore

f(s) ≥ ‖∇γ(s)‖2
2 − c‖∇γ(s)‖p2

= ‖∇γ(s)‖2
2

(
1− c‖∇γ(s)‖p−2

2

)
.

As γ(0) = 0 we see that f(s) > 0 for s small enough. Using the mean value Theorem we then
find some sγ ∈ (0, 1) with f(sγ) = 0, i.e. ‖∇γ(sγ)‖2

2 = ‖γ(sγ)‖pp.

(b) We can find the supremum by differentiating the map λ 7→ E(λv).

E(λv) = 1
2λ

2‖∇v‖2
2 −

1
p
λp‖v‖pp

= 1
2λ

2‖∇v‖2
2 −

1
p
λp

⇒ d

dλ
E(λv) = λ‖∇v‖2

2 − λ
p−1.

λ = 0 gives the local minimum 0, so we can assume λ 6= 0 and then we get λ = ‖∇v‖
2

p−2
2 . This

needs to be the maximum, because E(λv) > 0 for small λ whereas E(λv)→ −∞, λ→∞.
Therefore

sup
0<λ<∞

E(λv) = 1
2‖∇v‖

4
p−2
2 ‖∇v‖2

2 −
1
p
‖∇v‖

2p
p−2
2

=
(1

2 −
1
p

)
‖∇v‖

2p
p−2
2 .

(c) To prove this identity we will show that for all γ ∈ Γ it holds:

sup
0<λ

E(λu) ≤ sup
0≤s≤1

E(γ(s)). (1)

From this we get the inequality “≤” . The other inequality follows when noting that for N
large enough, s 7→ sNu is a path in Γ.

To prove (1) we calculate on one hand

sup
0<λ

E(λu) = p− 2
2p ‖∇u‖

2p
p−2
2 = p− 2

2p α
p

p−2
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and on the other hand

sup
0≤s≤1

E(γ(s)) ≥ E(w) = p− 2
2p ‖∇w‖

2
2,

where w = γ(sγ) as calculated in (a). It further holds

α ≤ ‖ ∇w
‖w‖p

‖2
2 = ‖∇w‖

2
2

‖w‖2
p

= ‖∇w‖
2
2

‖∇w‖
4
p

2

= ‖∇w‖
2p−4

p .

Combining these (in)equalities leads to (1).

(d) Let u be the element considered in (c). Then it holds

β = supE(λu) = 2− p
2p ‖∇u‖

2p
p−2
2 = 2− p

2p α
p

p−2 , (2)

which connects α and β. Let now ũ = u
‖u‖p

. As dE(u) = 0, we have in particular 〈dE(u), u〉 =
0, i.e.

‖u‖pp = ‖∇u‖2
2 = 2p

p− 2E(u)

as in (c). Therefore

‖∇ũ‖2
2 = 1
‖ũ‖2

p

‖∇ũ‖2
2 =

( 2p
p− 2E(u)

)1− 2
p

=
( 2p
p− 2β

) p−2
p = α,

where the last equality follows from (2).

2. Cerami.

(a) At each u ∈ X̃ we can find a vector satisfying the conditions. (This can be seen by
taking a unit vector v almost maximising 〈dE(u), v〉 and then normalising it to have norm
almost 1 + ‖u‖.) By the strict inequalities, the same vector will satisfy the conditions for all
v ∈ Uu, where Uu is a small neighbourhood of u. Thus we can cover X̃ by sets Uu. Then
take a locally finite refinement of this cover and a Lipschitz continuous partition of unity
subordinate to the refinement as in the lecture to get a global vectorfield, which is locally
Lipschitz continuous.

Note that we can take the pseudo gradient vector field constructed in the lecture and multiply
it with (1 + ‖u‖X) at each u ∈ X to get exactly the desired vector field for this exercise.
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(b) Given ε > 0, let 0 < ε < ε be such that ε ≤ 1
4δ. Let τ : R → [0, 1] be a smooth with

τ(s) = 1 if |s− β| < ε and τ(s) = 0 if |s− β| > 2ε. Let e : X → X be defined by

e(u) =

−τ
(
E(u)

)
ẽC(u), if dE(u) 6= 0, i.e. u ∈ X̃,

0, if dE(u) = 0.

Local Lipschitz continuity in X̃ is inherited from the vector field ẽC given in (a). Whenever
dE(u) = 0, the assumption Nβ,δ = ∅ implies |E(u)− β| ≥ δ ≥ 4ε > 2ε such that τ ◦ E and
hence e vanish in some neighbourhood of u which is most Lipschitz. Therefore, the initial
value problem{

∂
∂t

Φ(u, t) = e(Φ(u, t))
Φ(u, 0) = u

has a solution Φ: X × (−τ, τ)→ X at least for small τ > 0. Moreover, given t ∈ (−τ, τ)

‖Φ(u, t)‖ − ‖u‖ ≤ ‖Φ(u, t)− Φ(u, 0)‖ =
∥∥∥∫ t

0
e(Φ(u, t)) ds

∥∥∥
≤
∫ t

0

∥∥∥ẽC(Φ(u, t))
∥∥∥ ds ≤ ∫ t

0
1 + ‖Φ(u, t)‖ ds.

By Gronwall’s lemma ‖Φ(u, t)‖ ≤
(
‖u‖+ τ

)
e2t. Therefore, a solution Φ: X × R→ X exists.

(c) The map t 7→ E(Φ(u, t)) is non-increasing, since

d
dt
E(Φ(u, t)) =

〈
dE(Φ(u, t)), ∂

∂t
Φ(u, t)

〉
= −τ

(
E(Φ(u, t))

)〈
dE(Φ(u, t)), ẽC(Φ(u, t))

〉
≤ 0.

To show the inclusion Φ(Eβ+ε, 1) ⊆ Eβ−ε, consider u ∈ Eβ+ε := {u ∈ X | E(u) < β + ε}.
Whenever E(Φ(u, t)) < β − ε for some t ∈ (0, 1), then also E(Φ(u, 1)) < β − ε, as E(Φ(u, ·))
is non-increasing. Thus assume E(Φ(u, t)) ≥ β − ε for all t ∈ (0, 1] towards a contradiction.

Clearly, also E(Φ(u, t)) ≤ E(Φ(u, 0)) = E(u) < β+ε holds, such that |E(Φ(u, t))−β| < ε < δ.
Since Nβ,δ is assumed to be empty, ‖dE(Φ(u, t))‖X∗

(
1 + ‖Φ(u, t)‖

)
≥ δ follows necessarily.

By definition, τ(Φ(u, t)) = 1 for all t ∈ (0, 1] and

d
dt
E(Φ(u, t)) = −

〈
dE(Φ(u, t)), ẽC(Φ(u, t))

〉
< −1

2‖dE(Φ(u, t))‖X∗

(
1 + ‖Φ(u, t)‖

)
≤ −1

2δ ≤ 2ε.

Consequently, E(Φ(u, 1)) ≤ E(u)− 2ε < β − ε in contradiction to the assumption.
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