Solution 9

1. Präsenzaufgabe. First we show that $E \in C^1(H_0^1(\Omega))$. The $\int_{\Omega} |\nabla u|^2 dx$ -term is C^1 . The calculations for the other term work similarly to Problem Set 1: We use the Theorem

Theorem. Let $g: \Omega \times \mathbb{R}^m \to \mathbb{R}$ be a Carathéodory function. If the non-linear operator

$$\begin{split} T\colon L^p(\Omega) &\to L^q(\Omega) \\ u &\mapsto g(\cdot, u(\cdot)) \end{split}$$

is well-defined, then it is also continuous.

We apply this Theorem to $T: L^p(\Omega) \to L^{\frac{p}{p-1}}, u \to g(\cdot, u)$, which is well defined by property 2 (and because Ω is a bounded domain) and then we get

$$\left(\int_{\Omega} (g(x,u) - g(x,u_0))v \, dx\right)^p \le \|g(x,u) - g(x,u_0)\|_{\frac{p}{p-1}}^{p-1} \|v\|_p \to 0, \quad u \to u_0.$$

dE(u) is given by

$$\begin{split} \langle dE(u), v \rangle_{H^{-1} \times H^1_0} &= \int_{\Omega} \nabla u \cdot \nabla v \, dx - \int_{\Omega} g(x, u) v \, dx \\ &= \langle -\Delta u - g(\cdot, u), v \rangle_{H^{-1} \times H^1_0}. \end{split}$$

In the lecture we have seen that $-\Delta \colon H_0^1(\Omega) \to H^{-1}(\Omega) = (H_0^1(\Omega))^*$ is a linear isomorphism. We claim that $K \colon H_0^1(\Omega) \to H^{-1}(\Omega)$, given by $K(u) = g(\cdot, u)$ is a compact operator. Indeed, as $p < 2^*$, the inclusion $H_0^1(\Omega) \hookrightarrow L^p(\Omega)$ is compact. By condition 2, T is continuous (nonlinear) $L^p(\Omega) \to L^{\frac{p}{p-1}}(\Omega)$. $L^{\frac{p}{p-1}}(\Omega)$ embeds into $H^{-1}(\Omega)$ (because $L^{\frac{p}{p-1}}(\Omega) = (L^p(\Omega))^*$). Therefore, K is compact as the composition of these maps.

$$H_0^1(\Omega) \xrightarrow{K} H^{-1}(\Omega) = (H_0^1(\Omega))^*$$

$$\stackrel{\text{compact}}{\swarrow} L^p(\Omega) \xrightarrow{T} L^{\frac{p}{p-1}}(\Omega) = (L^p(\Omega))^*$$

By Theorem 2.3.1. from the lecture it is therefore enough to show that every $(P.-S.)_{\beta}$ -sequence is bounded, then we get the $(P.-S.)_{\beta}$ -condition. Let (u_k) be a $(P.-S.)_{\beta}$ -sequence, where $\beta \in \mathbb{R}$ is arbitrary.

As (u_k) is a (P.-S.)_{β}-sequence, we have

$$qE(u_k) - \langle dE(u_k), u_k \rangle_{H^{-1} \times H^1_0} = q(\beta + o(1)) + o(1) ||u_k||_{H^1_0}, \quad k \to \infty.$$

On the other hand

$$qE(u_k) - \langle dE(u_k), u_k \rangle = q \left(\frac{1}{2} \| \nabla u_k \|_2^2 - \int_{\Omega} G(x, u_k) \, dx \right) - \left(\| \nabla u_k \|_2^2 - \int_{\Omega} g(x, u_k) u_k \, dx \right)$$

$$= \frac{q-2}{2} \| \nabla u_k \|_2^2 + \int_{\Omega} \left(g(x, u_k) u_k - qG(x, u_k) \right) \, dx$$

$$\ge \frac{q-2}{2} \| u_k \|_{H_0^1}^2 + \mathcal{L}^n(\Omega) \operatorname{ess\,inf}_{x \in \Omega, v \in \mathbb{R}} \left(g(x, v)v - qG(x, v) \right),$$

when using the norm $||u||_{H_0^1}^2 = ||\nabla u||_2^2$. Combining these two we get

$$\frac{q-2}{2} \|u_k\|_{H_0^1}^2 + o(1) \|u_k\|_{H_0^1} \le q\beta + o(1) - \mathcal{L}^n(\Omega) \operatorname*{essinf}_{x \in \Omega, v \in \mathbb{R}} (g(x,v)v - qG(x,v)), \quad k \to \infty$$

By condition 3, the term (g(x, v)v - qG(x, v)) is bounded from below by 0 for all $|v| \ge R_0$. For small |v|, condition 2 gives a lower bound in dependence of C, p and R_0 . More precisely: $|g(x, u)| \le C(1 + R_0^{p-1})$ and therefore $G(x, u) \le R_0C(1 + R_0^{p-1})$ and then

$$(g(x,v)v - qG(x,v)) \ge -(CR_0 + qR_0C)(1 + R_0^{p-1}).$$

Therefore this term is bounded from below for all v and a.e. $x \in \Omega$ and we have shown that $||u_k||$ is bounded.

2. Boundary Value Problem. We will check the conditions for the mountain pass Lemma.

 $E \in C^1(H_0^1(\Omega))$ and the (P.-S.)_{β}-condition for all $\beta \in \mathbb{R}$ were already checked in Exercise 1.

E(0) = 0, because G(x, 0) = 0 for all x by definition of G.

We need to find some $\alpha, \rho > 0$ satisfying: $||u||_{H_0^1} = \rho \Rightarrow E(u) \ge \alpha$. To bound E(u) from below, we need to bound G(x, s) from above. The idea is that for large s, |g(x, s)| is bounded by a multiple of $|s|^{p-1}$ (condition 2) and for small s, g(x, s) is bounded by εs for arbitrary small $\varepsilon > 0$ (condition 1). To make this precise: Condition 1 tells us that given $\varepsilon > 0$, there is $\delta(\varepsilon) > 0$ such that $\frac{g(x,s)}{s} \le \varepsilon$ for all $|s| < \delta(\varepsilon)$. (Note that we can only bound g(x, s) from above, we cannot find a bound for |g(x, s)|.) Then

$$G(x,s) = \int_0^s g(x,t) \, dt = \int_0^s \frac{g(x,t)}{t} t \, dt \le \int_0^s \varepsilon t \, dt = \frac{\varepsilon}{2} s^2, \quad |s| < \delta(\varepsilon).$$

For $|s| \ge \delta(\varepsilon)$, we use condition 2 which tells that we can find a constant $C(\varepsilon)$ (possibly much larger than the given constant C) such that $|g(x,s)| \le C(\varepsilon)|s|^{p-1}$. So splitting the integral $\int_0^s g(x,t) dt$ in where $|s| < \delta(\varepsilon)$ and $|s| \ge \delta(\varepsilon)$ we can bound

$$G(x,s) \le \frac{\varepsilon}{2}|s|^2 + \frac{C(\varepsilon)}{p}|s|^p$$

where this bound holds for all s. Therefore

$$\begin{split} E(u) &= \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \int_{\Omega} G(x, u) \, dx \\ &\geq \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \frac{\varepsilon}{2} \int_{\Omega} |u|^2 \, dx - \frac{C(\varepsilon)}{p} \int_{\Omega} |u|^p \, dx \\ &\geq \left(\frac{1}{2} - \frac{\varepsilon}{2\lambda_1} - \frac{C(\varepsilon)\tilde{C}}{p} \|u\|_{H_0^1}^{p-2} \right) \|u\|_{H_0^1}^2, \end{split}$$

where $\lambda_1 = \inf_{0 \neq u \in C_c^{\infty}(\Omega)} \frac{\|\nabla u\|_2^2}{\|u\|_2^2} > 0$ is the first eigenvalue of $-\Delta$ as in Problem Set 6 and where we used the embedding $H_0^1 \hookrightarrow L^p$, i.e. $\|u\|_p^p \leq \tilde{C} \|u\|_{H_0^1}^p$. Taking first ε small enough (such that $\frac{1}{2} - \frac{\varepsilon}{2\lambda_1} > 0$) and then $\|u\|_{H_0^1} = \rho$ small enough, we get that

$$E(u) \ge \alpha := \left(\frac{1}{2} - \frac{\varepsilon}{2\lambda_1} - \frac{C(\varepsilon)\tilde{C}}{p}\rho^{p-2}\right)\rho^2 > 0.$$

Finally we need to find some u_1 with $E(u_1) < 0$. Therefore we will show that $E(\lambda u) \to -\infty$ $\lambda \to \infty$, if $u \neq 0$. So this time we need to bound G(x, s) from below. One can check that condition 3 implies

$$|s|^{q} \frac{d}{ds} (|s|^{-q} G(x,s)) \ge 0, \text{ if } |s| \ge R_{0}$$

When we integrate this we get for $v \ge R_0$

$$0 \leq \int_{R_0}^{v} s|s|^q \frac{d}{ds} \left(|s|^{-q} G(x,s) \right) ds \leq |v|^{q+1} \int_{R_0}^{v} \frac{d}{ds} \left(|s|^{-q} G(x,s) \right) ds$$
$$= |v|^{q+1} |s|^{-q} G(x,s)|_{s=R_0}^{v} = |v| G(x,v) - |v|^{q+1} R_0^{-q} G(x,R_0)$$
$$\Rightarrow G(x,v) \geq c|v|^q,$$

where $c = R_0^{-q} \min\{G(x, R_0), G(x, R_0)\}$ and for $v < -R_0$ we integrate $\int_{-R_0}^{v} \dots$ and get the same estimate. For $|v| \leq R_0$, we bound

$$|G(x,v)| \le \underset{x \in \Omega, |v| \le R_0}{\operatorname{ess\,sup}} |G(x,v)| \le CR_0(1+R_0^{p-1}).$$

So inserting this into $E(\lambda u)$ we get

$$E(\lambda u) = \frac{\lambda^2}{2} \int_{\Omega} |\nabla u|^2 dx - \int_{\Omega} G(x, \lambda u) dx$$

$$\leq C_1(u)\lambda^2 - \lambda^q \Big(\int_{\{\lambda | u | \ge R_0\}} c |u|^p dx \Big) + \mathcal{L}^n(\Omega) \operatorname{ess\,sup}_{x \in \Omega, |v| \le R_0} |G(x, v)|$$

$$\to -\infty, \quad \lambda \to \infty,$$

where the convergence uses q > 2 and where $C_1(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx$. Therefore for λ large enough $E(\lambda u) < 0$.

The mountain pass Lemma then gives a non-trivial solution $u \in H_0^1(\Omega)$. But we actually want to find solutions $u^+ \ge 0 \ge u^-$. Therefore we modify g as follows:

$$g^{+}(x,u) = \begin{cases} g(x,u) & u > 0\\ 0 & u \le 0 \end{cases}$$
$$g^{-}(x,u) = \begin{cases} 0 & u > 0\\ g(x,u) & u \le 0. \end{cases}$$

 g^{\pm} satisfy almost the same conditions as g, so we can apply the above calculations with modifications when we show $E(\lambda u) \to -\infty$: For g^+ , the calculations in this step only work for $u \ge 0$ and for g^- they only work for $u \le 0$. The rest of the above steps can be taken over to get nontrivial solutions u^{\pm} of

$$\begin{cases} -\Delta u^{+} = g^{+}(\cdot, u^{+}) & \text{in } \Omega, \\ u^{+} = 0 & \text{on } \partial\Omega, \\ -\Delta u^{-} = g^{-}(\cdot, u^{-}) & \text{in } \Omega, \\ u^{-} = 0 & \text{on } \partial\Omega. \end{cases}$$

We need to check that $u^+ \ge 0 \ge u^-$ Then $g^+(x, u^+(x)) = g(x, u^+(x))$ and $g^-(x, u^-(x)) = g(x, u^-(x))$ for all x and therefore u^{\pm} are solutions of the original equation.

We can show $u^+ \ge 0$ by writing $u^+ = v + w$, where v is the positive part of u^+ and w the negative part. Testing the PDE with w we then get

$$\|\nabla w\|_{2}^{2} = \int_{\Omega} \nabla u^{+} \nabla w \, dx = \int_{\Omega} g^{+}(x, u^{+}) w \, dx = 0,$$

because q^+ is 0 whenever w is non-zero. Therefore $w \equiv 0$.

Similarly, the positive part of u^- is 0.

3. Three Distinct Solutions.

(a) First note that E is coercive, because $||u||_4^4 \ge c||u||_2^4$ and therefore this term dominates the two negative terms.

As E is w.s.l.s.c. we can find minimisers of E in the weak closures of M^{\pm} . Note that for a weak limit u of elements in M^+ satisfies $\langle u, e_1 \rangle \ge 0$, so the weak closure is a subset of the norm closure. So we just need to show that these minima cannot lie in the set $N := \{u \in H_0^1(\Omega) \mid \langle u, e_1 \rangle_{H_0^1} = 0\} = \operatorname{span}\{e_2, e_3, \ldots\}$, where e_i are the eigenfunctions of $-\Delta$ to the eigenvalue λ_i . To do this we estimate

$$\inf_{u \in M^+} E(u) \leq \inf_{t>0} E(te_1),
\inf_{u \in M^-} E(u) \leq \inf_{t<0} E(te_1).
E(te_1) = \frac{1}{2} \Big(\|\nabla te_1\|_2^2 - \lambda \|te_1\|_2^2 \Big) + \frac{1}{4} \|te_1\|_4^4 - \int_{\Omega} te_1 f \, dx
= \frac{1}{2} t^2 \Big(\lambda_1 - \lambda\Big) \|e_1\|_2^2 + \frac{1}{4} t^4 \|e_1\|_4^4 - t \int_{\Omega} e_1 f \, dx
\leq \frac{1}{2} t^2 \Big(\lambda_1 - \lambda\Big) + \frac{1}{4} t^4 \|e_1\|_4^4 + \|t\| \|e_1\|_2 \|f\|_2 =: g(t).$$

As $\lambda > \lambda_1$, g(t) is of the form $-A_1t^2 + A_2t^4 + A_3t$ with $A_1, A_2, A_3 > 0$. Whatever A_1 and A_2 are, we can always choose A_3 so small that g has a negative minimum for some t > 0. A_3 can be made small by letting $C(\lambda)$, the bound on $||f||_2$, be small. The above bound holds for all $t \in \mathbb{R}$, so both $\inf_{u \in M^+} E(u)$ and $\inf_{u \in M^-} E(u)$ ar bounded away from 0. We also note here that if $||f||_2$ gets smaller, then the bound on the infimum gets better, in the sense of more negative.

Now we need to bound $\inf_{u \in N} E(u)$ from below. Therefore we first note that for $u \in N$, which is a limit of linear combinations of e_2, e_3, \ldots , satisfies $\|\nabla u\|_2^2 \ge \lambda_2 \|u\|_2^2$. (Because each $e_i, i > 1$ satisfies this inequality, then it holds for finite linear combinations and then also for limits.) Then we get

$$E(u) \ge \frac{1}{2} (\lambda_2 - \lambda) ||u||_2^2 + \frac{1}{4} ||u||_4^4 - \int_{\Omega} uf \, dx$$

$$\ge \frac{1}{2} (\lambda_2 - \lambda) ||u||_2^2 - ||u||_2 ||f||_2.$$

It holds $\min_{t \in \mathbb{R}} \frac{1}{2} (\lambda_2 - \lambda) t^2 - t ||f|| = -\frac{||f||_2^2}{2(\lambda_2 - \lambda)}$ by differentiating w.r.t. t and therefore

$$\inf_{u \in N} E(u) \ge -\frac{\|f\|_2^2}{2(\lambda_1 - \lambda)}$$

If $C(\lambda)$ gets smaller, then this lower bound gets arbitrarily close to 0, whereas the upper bound on $\inf E(te_1)$ is in some fixed distance away from 0 (and gets smaller for $C(\lambda)$ smaller), so we see that for $C(\lambda)$ small enough there holds

$$\inf E(te_1) < \inf_{u \in N} E(u) - \varepsilon$$

for some small $\varepsilon > 0$.

So we have shown that the minima of $\overline{M^{\pm}}$ need to be attained in the interior of these two sets, i.e. in M^{\pm} .

(b) In (a) we have already shown that $\inf_{u \in N} E(u) > E(u^+)$, $E(u^-)$. If we show that $E \in C^1$ and satisfies $(P.-S.)_{\beta}$ for appropriate β , we can apply Thm. 2.3.2. which tells us that there is a third critical point.

We use similar estimates as in Exercise 1 to show C^1 .

For $(P.-S.)_{\beta}$ we use coercivity. Because then every $(P.-S.)_{\beta}$ -sequence is bounded. dE is of the form considered in Theorem 2.3.1. for $L = -\Delta$ and $K(u) = \lambda u - u^3 + f$. As a map $L^6 \to L^2$, $u \mapsto u - u^3 + f$ is continuous and bounded in the sense that $||u - u^3 + f||_2 \leq \mathcal{L}^n(\Omega)^{\frac{1}{3}} ||u||_6^2 + ||u||_6^3 + ||f||_2$, i.e. if $||u||_6 \leq c$, there is a constant D such that $||u - u^3 + f||_2 \leq D$. The inclusion $H_0^1(\Omega) \hookrightarrow L^2(\Omega)$ is compact and therefore $(L^2(\Omega))^* \hookrightarrow (H_0^1(\Omega))^*$ is compact as well. Hence K is compact as the composition of a bounded and a compact map.

Then Thm. 2.3.2. tells us that there is a critical point u with $E(u) = \beta$, where

$$\beta = \inf_{\gamma \in \Gamma} \sup_{0 \le s \le 1} E(\gamma(s))$$

$$\Gamma = \{ \gamma \in C^0([0,1]; H^1_0(\Omega)) \mid \gamma(0) = u^+, \, \gamma(1) = u^- \}.$$

As each of these paths γ has to pass by N (because $u^+ \in M^+$, $u^- \in M^-$), we get from the calculations in (a) that $\beta > E(u^+), E(u^-)$.