Solution 9

1. Präsenzaufgabe. First we show that $E \in C^{1}\left(H_{0}^{1}(\Omega)\right)$. The $\int_{\Omega}|\nabla u|^{2} d x$-term is C^{1}. The calculations for the other term work similarly to Problem Set 1: We use the Theorem

Theorem. Let $g: \Omega \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a Carathéodory function. If the non-linear operator

$$
\begin{aligned}
T: L^{p}(\Omega) & \rightarrow L^{q}(\Omega) \\
u & \mapsto g(\cdot, u(\cdot))
\end{aligned}
$$

is well-defined, then it is also continuous.
We apply this Theorem to $T: L^{p}(\Omega) \rightarrow L^{\frac{p}{p-1}}, u \rightarrow g(\cdot, u)$, which is well defined by property 2 (and because Ω is a bounded domain) and then we get

$$
\left(\int_{\Omega}\left(g(x, u)-g\left(x, u_{0}\right)\right) v d x\right)^{p} \leq\left\|g(x, u)-g\left(x, u_{0}\right)\right\|_{\frac{p}{p-1}}^{p-1}\|v\|_{p} \rightarrow 0, \quad u \rightarrow u_{0} .
$$

$d E(u)$ is given by

$$
\begin{aligned}
\langle d E(u), v\rangle_{H^{-1} \times H_{0}^{1}} & =\int_{\Omega} \nabla u \cdot \nabla v d x-\int_{\Omega} g(x, u) v d x \\
& =\langle-\Delta u-g(\cdot, u), v\rangle_{H^{-1} \times H_{0}^{1}} .
\end{aligned}
$$

In the lecture we have seen that $-\Delta: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)=\left(H_{0}^{1}(\Omega)\right)^{*}$ is a linear isomorphism. We claim that $K: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$, given by $K(u)=g(\cdot, u)$ is a compact operator. Indeed, as $p<2^{*}$, the inclusion $H_{0}^{1}(\Omega) \hookrightarrow L^{p}(\Omega)$ is compact. By condition $2, T$ is continuous (nonlinear) $L^{p}(\Omega) \rightarrow L^{\frac{p}{p-1}}(\Omega)$. $L^{\frac{p}{p-1}}(\Omega)$ embeds into $H^{-1}(\Omega)$ (because $\left.L^{\frac{p}{p-1}}(\Omega)=\left(L^{p}(\Omega)\right)^{*}\right)$. Therefore, K is compact as the composition of these maps.

By Theorem 2.3.1. from the lecture it is therefore enough to show that every (P.-S.) $)_{\beta}$-sequence is bounded, then we get the (P.-S.) β_{β}-condition. Let $\left(u_{k}\right)$ be a (P.-S.) β_{β}-sequence, where $\beta \in \mathbb{R}$ is arbitrary.

As $\left(u_{k}\right)$ is a (P.-S. $)_{\beta}$-sequence, we have

$$
q E\left(u_{k}\right)-\left\langle d E\left(u_{k}\right), u_{k}\right\rangle_{H^{-1} \times H_{0}^{1}}=q(\beta+o(1))+o(1)\left\|u_{k}\right\|_{H_{0}^{1}}, \quad k \rightarrow \infty .
$$

On the other hand

$$
\begin{aligned}
q E\left(u_{k}\right)- & \left\langle d E\left(u_{k}\right), u_{k}\right\rangle=q\left(\frac{1}{2}\left\|\nabla u_{k}\right\|_{2}^{2}-\int_{\Omega} G\left(x, u_{k}\right) d x\right)-\left(\left\|\nabla u_{k}\right\|_{2}^{2}-\int_{\Omega} g\left(x, u_{k}\right) u_{k} d x\right) \\
& =\frac{q-2}{2}\left\|\nabla u_{k}\right\|_{2}^{2}+\int_{\Omega}\left(g\left(x, u_{k}\right) u_{k}-q G\left(x, u_{k}\right)\right) d x \\
& \geq \frac{q-2}{2}\left\|u_{k}\right\|_{H_{0}^{1}}^{2}+\mathcal{L}^{n}(\Omega) \underset{x \in \Omega, v \in \mathbb{R}}{\operatorname{ess} \inf }(g(x, v) v-q G(x, v)),
\end{aligned}
$$

when using the norm $\|u\|_{H_{0}^{1}}^{2}=\|\nabla u\|_{2}^{2}$. Combining these two we get

$$
\frac{q-2}{2}\left\|u_{k}\right\|_{H_{0}^{1}}^{2}+o(1)\left\|u_{k}\right\|_{H_{0}^{1}} \leq q \beta+o(1)-\mathcal{L}^{n}(\Omega) \underset{x \in \Omega, v \in \mathbb{R}}{\operatorname{ess} \inf }(g(x, v) v-q G(x, v)), \quad k \rightarrow \infty .
$$

By condition 3, the term $(g(x, v) v-q G(x, v))$ is bounded from below by 0 for all $|v| \geq R_{0}$. For small $|v|$, condition 2 gives a lower bound in dependence of C, p and R_{0}. More precisely: $|g(x, u)| \leq C\left(1+R_{0}^{p-1}\right)$ and therefore $G(x, u) \leq R_{0} C\left(1+R_{0}^{p-1}\right)$ and then

$$
(g(x, v) v-q G(x, v)) \geq-\left(C R_{0}+q R_{0} C\right)\left(1+R_{0}^{p-1}\right)
$$

Therefore this term is bounded from below for all v and a.e. $x \in \Omega$ and we have shown that $\left\|u_{k}\right\|$ is bounded.
2. Boundary Value Problem. We will check the conditions for the mountain pass Lemma.
$E \in C^{1}\left(H_{0}^{1}(\Omega)\right)$ and the (P.-S. $)_{\beta}$-condition for all $\beta \in \mathbb{R}$ were already checked in Exercise 1.
$E(0)=0$, because $G(x, 0)=0$ for all x by definition of G.
We need to find some $\alpha, \rho>0$ satisfying: $\|u\|_{H_{0}^{1}}=\rho \Rightarrow E(u) \geq \alpha$. To bound $E(u)$ from below, we need to bound $G(x, s)$ from above. The idea is that for large $s,|g(x, s)|$ is bounded by a multiple of $|s|^{p-1}$ (condition 2) and for small $s, g(x, s)$ is bounded by εs for arbitrary small $\varepsilon>0$ (condition 1). To make this precise: Condition 1 tells us that given $\varepsilon>0$, there is $\delta(\varepsilon)>0$ such that $\frac{g(x, s)}{s} \leq \varepsilon$ for all $|s|<\delta(\varepsilon)$. (Note that we can only bound $g(x, s)$ from above, we cannot find a bound for $|g(x, s)|$.) Then

$$
G(x, s)=\int_{0}^{s} g(x, t) d t=\int_{0}^{s} \frac{g(x, t)}{t} t d t \leq \int_{0}^{s} \varepsilon t d t=\frac{\varepsilon}{2} s^{2}, \quad|s|<\delta(\varepsilon) .
$$

For $|s| \geq \delta(\varepsilon)$, we use condition 2 which tells that we can find a constant $C(\varepsilon)$ (possibly much larger than the given constant C) such that $|g(x, s)| \leq C(\varepsilon)|s|^{p-1}$. So splitting the integral $\int_{0}^{s} g(x, t) d t$ in where $|s|<\delta(\varepsilon)$ and $|s| \geq \delta(\varepsilon)$ we can bound

$$
G(x, s) \leq \frac{\varepsilon}{2}|s|^{2}+\frac{C(\varepsilon)}{p}|s|^{p},
$$

where this bound holds for all s. Therefore

$$
\begin{aligned}
E(u) & =\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\int_{\Omega} G(x, u) d x \\
& \geq \frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\frac{\varepsilon}{2} \int_{\Omega}|u|^{2} d x-\frac{C(\varepsilon)}{p} \int_{\Omega}|u|^{p} d x \\
& \geq\left(\frac{1}{2}-\frac{\varepsilon}{2 \lambda_{1}}-\frac{C(\varepsilon) \tilde{C}}{p}\|u\|_{H_{0}^{1}}^{p-2}\right)\|u\|_{H_{0}^{1}}^{2},
\end{aligned}
$$

where $\lambda_{1}=\inf _{0 \neq u \in C_{c}^{\infty}(\Omega)} \frac{\|\nabla u\|_{2}^{2}}{\|u\|_{2}^{2}}>0$ is the first eigenvalue of $-\Delta$ as in Problem Set 6 and where we used the embedding $H_{0}^{1} \hookrightarrow L^{p}$, i.e. $\|u\|_{p}^{p} \leq \tilde{C}\|u\|_{H_{0}^{1}}^{p}$. Taking first ε small enough (such that $\frac{1}{2}-\frac{\varepsilon}{2 \lambda_{1}}>0$) and then $\|u\|_{H_{0}^{1}}=\rho$ small enough, we get that

$$
E(u) \geq \alpha:=\left(\frac{1}{2}-\frac{\varepsilon}{2 \lambda_{1}}-\frac{C(\varepsilon) \tilde{C}}{p} \rho^{p-2}\right) \rho^{2}>0 .
$$

Finally we need to find some u_{1} with $E\left(u_{1}\right)<0$. Therefore we will show that $E(\lambda u) \rightarrow-\infty$ $\lambda \rightarrow \infty$, if $u \neq 0$. So this time we need to bound $G(x, s)$ from below. One can check that condition 3 implies

$$
s|s|^{q} \frac{d}{d s}\left(|s|^{-q} G(x, s)\right) \geq 0, \quad \text { if }|s| \geq R_{0}
$$

When we integrate this we get for $v \geq R_{0}$

$$
\begin{aligned}
0 & \leq \int_{R_{0}}^{v} s|s|^{q} \frac{d}{d s}\left(|s|^{-q} G(x, s)\right) d s \leq|v|^{q+1} \int_{R_{0}}^{v} \frac{d}{d s}\left(|s|^{-q} G(x, s)\right) d s \\
& =\left.|v|^{q+1}|s|^{-q} G(x, s)\right|_{s=R_{0}} ^{v}=|v| G(x, v)-|v|^{q+1} R_{0}^{-q} G\left(x, R_{0}\right) \\
\Rightarrow G(x, v) & \geq c|v|^{q},
\end{aligned}
$$

where $c=R_{0}^{-q} \min \left\{G\left(x, R_{0}\right), G\left(x, R_{0}\right)\right\}$ and for $v<-R_{0}$ we integrate $\int_{-R_{0}}^{v} \ldots$ and get the same estimate. For $|v| \leq R_{0}$, we bound

$$
|G(x, v)| \leq \underset{x \in \Omega,|v| \leq R_{0}}{\operatorname{ess} \sup _{0}}|G(x, v)| \leq C R_{0}\left(1+R_{0}^{p-1}\right) .
$$

So inserting this into $E(\lambda u)$ we get

$$
\begin{aligned}
E(\lambda u) & =\frac{\lambda^{2}}{2} \int_{\Omega}|\nabla u|^{2} d x-\int_{\Omega} G(x, \lambda u) d x \\
& \leq C_{1}(u) \lambda^{2}-\lambda^{q}\left(\int_{\left\{\lambda|u| \geq R_{0}\right\}} c|u|^{p} d x\right)+\mathcal{L}^{n}(\Omega) \operatorname{esssup}_{x \in \Omega,|v| \leq R_{0}}|G(x, v)| \\
& \rightarrow-\infty, \quad \lambda \rightarrow \infty,
\end{aligned}
$$

where the convergence uses $q>2$ and where $C_{1}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x$. Therefore for λ large enough $E(\lambda u)<0$.

The mountain pass Lemma then gives a non-trivial solution $u \in H_{0}^{1}(\Omega)$. But we actually want to find solutions $u^{+} \geq 0 \geq u^{-}$. Therefore we modify g as follows:

$$
\begin{aligned}
& g^{+}(x, u)= \begin{cases}g(x, u) & u>0 \\
0 & u \leq 0\end{cases} \\
& g^{-}(x, u)= \begin{cases}0 & u>0 \\
g(x, u) & u \leq 0 .\end{cases}
\end{aligned}
$$

$g^{ \pm}$satisfy almost the same condtions as g, so we can apply the above calculations with modifications when we show $E(\lambda u) \rightarrow-\infty$: For g^{+}, the calculations in this step only work for $u \geq 0$ and for g^{-}they only work for $u \leq 0$. The rest of the above steps can be taken over to get nontrivial solutions $u^{ \pm}$of

$$
\begin{aligned}
\left\{\begin{aligned}
-\Delta u^{+} & =g^{+}\left(\cdot, u^{+}\right) & & \text {in } \Omega, \\
u^{+} & =0 & & \text { on } \partial \Omega,
\end{aligned}\right. \\
\left\{\begin{aligned}
-\Delta u^{-} & =g^{-}\left(\cdot, u^{-}\right) & & \text {in } \Omega, \\
u^{-} & =0 & & \text { on } \partial \Omega .
\end{aligned}\right.
\end{aligned}
$$

We need to check that $u^{+} \geq 0 \geq u^{-}$Then $g^{+}\left(x, u^{+}(x)\right)=g\left(x, u^{+}(x)\right)$ and $g^{-}\left(x, u^{-}(x)\right)=$ $g\left(x, u^{-}(x)\right)$ for all x and therefore $u^{ \pm}$are solutions of the original equation.

We can show $u^{+} \geq 0$ by writing $u^{+}=v+w$, where v is the positive part of u^{+}and w the negative part. Testing the PDE with w we then get

$$
\|\nabla w\|_{2}^{2}=\int_{\Omega} \nabla u^{+} \nabla w d x=\int_{\Omega} g^{+}\left(x, u^{+}\right) w d x=0
$$

because g^{+}is 0 whenever w is non-zero. Therefore $w \equiv 0$.
Similarly, the positive part of u^{-}is 0 .

3. Three Distinct Solutions.

(a) First note that E is coercive, because $\|u\|_{4}^{4} \geq c\|u\|_{2}^{4}$ and therefore this term dominates the two negative terms.

As E is w.s.l.s.c. we can find minimisers of E in the weak closures of $M^{ \pm}$. Note that for a weak limit u of elements in M^{+}satisfies $\left\langle u, e_{1}\right\rangle \geq 0$, so the weak closure is a subset of the norm closure. So we just need to show that these minima cannot lie in the set $N:=\left\{u \in H_{0}^{1}(\Omega) \mid\left\langle u, e_{1}\right\rangle_{H_{0}^{1}}=0\right\}=\operatorname{span}\left\{e_{2}, e_{3}, \ldots\right\}$, where e_{i} are the eigenfunctions of $-\Delta$
to the eigenvalue λ_{i}. To do this we estimate

$$
\begin{aligned}
\inf _{u \in M^{+}} E(u) & \leq \inf _{t>0} E\left(t e_{1}\right), \\
\inf _{u \in M^{-}} E(u) & \leq \inf _{t<0} E\left(t e_{1}\right) . \\
E\left(t e_{1}\right) & =\frac{1}{2}\left(\left\|\nabla t e_{1}\right\|_{2}^{2}-\lambda\left\|t e_{1}\right\|_{2}^{2}\right)+\frac{1}{4}\left\|t e_{1}\right\|_{4}^{4}-\int_{\Omega} t e_{1} f d x \\
& =\frac{1}{2} t^{2}\left(\lambda_{1}-\lambda\right)\left\|e_{1}\right\|_{2}^{2}+\frac{1}{4} t^{4}\left\|e_{1}\right\|_{4}^{4}-t \int_{\Omega} e_{1} f d x \\
& \leq \frac{1}{2} t^{2}\left(\lambda_{1}-\lambda\right)+\frac{1}{4} t^{4}\left\|e_{1}\right\|_{4}^{4}+|t|\left\|e_{1}\right\|_{2}\|f\|_{2}=: g(t) .
\end{aligned}
$$

As $\lambda>\lambda_{1}, g(t)$ is of the form $-A_{1} t^{2}+A_{2} t^{4}+A_{3} t$ with $A_{1}, A_{2}, A_{3}>0$. Whatever A_{1} and A_{2} are, we can always choose A_{3} so small that g has a negative minimum for some $t>0 . A_{3}$ can be made small by letting $C(\lambda)$, the bound on $\|f\|_{2}$, be small. The above bound holds for all $t \in \mathbb{R}$, so both $\inf _{u \in M^{+}} E(u)$ and $\inf _{u \in M^{-}} E(u)$ ar bounded away from 0 . We also note here that if $\|f\|_{2}$ gets smaller, then the bound on the infimum gets better, in the sense of more negative.

Now we need to bound $\inf _{u \in N} E(u)$ from below. Therefore we first note that for $u \in N$, which is a limit of linear combinations of e_{2}, e_{3}, \ldots, satisfies $\|\nabla u\|_{2}^{2} \geq \lambda_{2}\|u\|_{2}^{2}$. (Because each $e_{i}, i>1$ satisfies this inequality, then it holds for finite linear combinations and then also for limits.) Then we get

$$
\begin{aligned}
E(u) & \geq \frac{1}{2}\left(\lambda_{2}-\lambda\right)\|u\|_{2}^{2}+\frac{1}{4}\|u\|_{4}^{4}-\int_{\Omega} u f d x \\
& \geq \frac{1}{2}\left(\lambda_{2}-\lambda\right)\|u\|_{2}^{2}-\|u\|_{2}\|f\|_{2} .
\end{aligned}
$$

It holds $\min _{t \in \mathbb{R}} \frac{1}{2}\left(\lambda_{2}-\lambda\right) t^{2}-t\|f\|=-\frac{\|f\|_{2}^{2}}{2\left(\lambda_{2}-\lambda\right)}$ by differentiating w.r.t. t and therefore

$$
\inf _{u \in N} E(u) \geq-\frac{\|f\|_{2}^{2}}{2\left(\lambda_{1}-\lambda\right)}
$$

If $C(\lambda)$ gets smaller, then this lower bound gets arbitrarily close to 0 , whereas the upper bound on $\inf E\left(t e_{1}\right)$ is in some fixed distance away from 0 (and gets smaller for $C(\lambda)$ smaller), so we see that for $C(\lambda)$ small enough there holds

$$
\inf E\left(t e_{1}\right)<\inf _{u \in N} E(u)-\varepsilon
$$

for some small $\varepsilon>0$.
So we have shown that the minima of $\overline{M^{ \pm}}$need to be attained in the interior of these two sets, i.e. in $M^{ \pm}$.
(b) In (a) we have already shown that $\inf _{u \in N} E(u)>E\left(u^{+}\right), E\left(u^{-}\right)$. If we show that $E \in C^{1}$ and satisfies (P.-S.) $)_{\beta}$ for appropriate β, we can apply Thm. 2.3.2. which tells us that there is a third critical point.

We use similar estimates as in Exercise 1 to show C^{1}.
For (P.-S.) $)_{\beta}$ we use coercivity. Because then every (P.-S. $)_{\beta}$-sequence is bounded. $d E$ is of the form considered in Theorem 2.3.1. for $L=-\Delta$ and $K(u)=\lambda u-u^{3}+f$. As a map $L^{6} \rightarrow L^{2}, u \mapsto u-u^{3}+f$ is continuous and bounded in the sense that $\left\|u-u^{3}+f\right\|_{2} \leq$ $\mathcal{L}^{n}(\Omega)^{\frac{1}{3}}\|u\|_{6}^{2}+\|u\|_{6}^{3}+\|f\|_{2}$, i.e. if $\|u\|_{6} \leq c$, there is a constant D such that $\left\|u-u^{3}+f\right\|_{2} \leq D$. The inclusion $H_{0}^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$ is compact and therefore $\left(L^{2}(\Omega)\right)^{*} \hookrightarrow\left(H_{0}^{1}(\Omega)\right)^{*}$ is compact as well. Hence K is compact as the composition of a bounded and a compact map.

Then Thm. 2.3.2. tells us that there is a critical point u with $E(u)=\beta$, where

$$
\begin{aligned}
& \beta=\inf _{\gamma \in \Gamma} \sup _{0 \leq s \leq 1} E(\gamma(s)) \\
& \Gamma=\left\{\gamma \in C^{0}\left([0,1] ; H_{0}^{1}(\Omega)\right) \mid \gamma(0)=u^{+}, \gamma(1)=u^{-}\right\} .
\end{aligned}
$$

As each of these paths γ has to pass by N (because $u^{+} \in M^{+}, u^{-} \in M^{-}$), we get from the calculations in (a) that $\beta>E\left(u^{+}\right), E\left(u^{-}\right)$.

