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Consider a filtered probability space (€2, F, (F;)i>0, P) carrying a (standard) Brownian
motion W = (W;):>o.

-----

with the property that 0 =ty < t; < ... < t, < oo. Consider a simple integrand
h:Q xRy — R (w,t) — h(w,t)

of the form!
hw,t) =Y @i(w)g,_, (D), (1)
=1

where (p; are F;,_,-measurable random variables, bounded in £2(£2, F,P), and let

t n
(he W) := / h(s)dW, = Z ©0i(Wiine — Wi, i nt)
0 i=1

denote the stochastic integral of & with respect to Brownian motion W'.

a) Show that the process h e IV is a continuous martingale.
b) Show the It6 isometry for h e IV, i.e.

(/OOO h(s)dWs)z = UOOO |h(s)|2ds}. ()

2. (Yor’s Formula) Let X be an Itd process and let £(X ) denote its stochastic exponential

E

gt(X) = eX(t)_X(O)—%<X7X)t.

Show the identity
EX)EY) = E(X +Y)eHY),

"We assume that ho(w) = ¢1(w).

Bitte wenden!



3. Consider the Ornstein-Uhlenbeck process
t
Xy=ze M +u(l—e ™)+ / oerVdW,, >0 (3)
0

for an z € R, where the parameters v and A\, 0 > 0 take real values.
a) Show that X satisfies the Ornstein-Uhlenbeck stochastic differential equation:

dXt = /\(V — Xt)dt + O'th, X() =T.

b) Calculate the mean and variance functions of X:

T — E[Xr|, and T ~ Var[X7]|.

¢) For 7 > 0 consider the rescaled AR(1) process (Y7),>o defined by
Y =c.+¢ Y] | +oe, Y, =x

with ¢, = A\vT, 0, =1 — A1, 0, = 04/7 and ¢, are i.i.d standard Gaussian ran-
dom variables. Verify that the corresponding mean and variance of Y[tT /7] indeed
converge to its Ornstein-Uhlenbeck counterpart, i.e,

EYy) = E[Xy] and Var[Y],] = Var[X,] as 7—0,

where [z]| denotes the integer part of .
Note: It can be shown that the rescaled process Y|;, ; converges weakly to the
Ornstein-Uhlenbeck process X; as 7 — 0.

4. Consider again the Ornstein-Uhlenbeck process X in the setting of Ex 2-3.
a) Show that for any 7' > 0 the distribution of X is given by
o2
Xr~N (xeAT + (1 — e, 5(1 - 62’\T)>
by proceeding as follows:
e Show in general for arbitrary 7" > 0, that if
f : [OaT] — R e CO([OaT])a

then /0 ' F(8)dW, ~ N (0, /O T( f(s))%zs) . 4)

Siehe nachstes Blatt!



e Conclude the statement using the first step and Ex 2-3 b).

Hint: For the first point approximate the process by simple functions, then use
Lévy’s continuity theorem and the fact that the characteristic function of a ran-
dom variable uniquely characterizes its distribution.

b) Compute E[X ] explicitly

5. Matlab Implementation Given a finite time horizon 7" = 1, the aim of this exercise
is to simulate the Ornstein-Uhlenbeck process and the Cox-Ingersoll-Ross process on
the time interval [0, 7| using the Euler-Maruyama scheme. We define an equidistant
decomposition {0 =ty < ... < t,, = T'} of the interval [0, T] by setting

i
ti=—T, i=0,...,M =10
M 1

If X is a process on the interval [0, T'] satisfying the stochastic differential equation
dXt = a,(t, Xt)dt + b(t, Xt)th

with initial condition Xg = z foranz € R,and {0 =0 < t; < ... <ty =T is a gi-
ven discretization of the time interval [0, T, then an Euler-Maruyama approximation*
of X is given by the iterative scheme: X, = = and

Xt¢+1 = Xti + Oj(ti,Xti)(ti+1 — tl) + b<ti7Xti)<Wti+1 — Wti)a 1= O, Ce M —1.

a) Simulate 10 sample paths of the OU-process X from Ex 2-3 with A =1, v = 1.2,
oc=0.3and X, =1.

b) Use Monte-Carlo simulation (N = 10°) to compute E[X}], E[X?], E[X/]
¢) Consider the Cox-Ingersoll-Ross process Y defined by the following SDE:
dY, = MNv =Y,)dt + o/ YidW,, Yy=uy.

Assuming 2\ > o repeat the tasks (a) and (b) for the CIR process. Is there a
potential problem for the simulation procedure?

2 As a reference for the Euler-Maruyama approximation see for example Section 3.2 of Numerical Solu-
tion of SDE Through Computer Experiments (Kloeden, Platen, Schurz).



