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Consider a filtered probability space (Ω,F , (Ft)t≥0,P) carrying a (standard) Brownian
motion W = (Wt)t≥0.

1. Let n ∈ N be arbitrary and let (ti)i∈{0,...,n} be an (n+1)-tuple of positive real numbers
with the property that 0 = t0 < t1 < . . . < tn <∞. Consider a simple integrand

h : Ω× R+ −→ R, (ω, t) 7−→ h(ω, t)

of the form1

h(ω, t) =
n∑
i=1

ϕi(ω)I(ti−1,ti](t), (1)

where ϕi are Fti−1
-measurable random variables, bounded in L2(Ω,F ,P), and let

(h •W )t :=

∫ t

0

h(s)dWs =
n∑
i=1

ϕi(Wti∧t −Wti−1∧t)

denote the stochastic integral of h with respect to Brownian motion W .

a) Show that the process h •W is a continuous martingale.

b) Show the Itô isometry for h •W , i.e.

E

[(∫ ∞
0

h(s)dWs

)2
]

= E
[∫ ∞

0

|h(s)|2 ds
]
. (2)

2. (Yor’s Formula) LetX be an Itô process and let E(X) denote its stochastic exponential

Et(X) := eX(t)−X(0)− 1
2
〈X,X〉t .

Show the identity

E(X)E(Y ) = E(X + Y )e〈X,Y 〉.

1We assume that h0(ω) = ϕ1(ω).

Bitte wenden!



3. Consider the Ornstein-Uhlenbeck process

Xt = xe−λt + ν(1− e−λt) +

∫ t

0

σeλ(s−t)dWs, t ≥ 0 (3)

for an x ∈ R, where the parameters ν and λ, σ > 0 take real values.

a) Show that X satisfies the Ornstein-Uhlenbeck stochastic differential equation:

dXt = λ(ν −Xt)dt+ σdWt, X0 = x.

b) Calculate the mean and variance functions of X:

T 7→ E[XT ], and T 7→ Var[XT ].

c) For τ > 0 consider the rescaled AR(1) process (Y τ )n≥0 defined by

Y τ
n = cτ + ϕτY

τ
n−1 + στεn, Y0 = x

with cτ = λντ, ϕτ = 1 − λτ , στ = σ
√
τ and εn are i.i.d standard Gaussian ran-

dom variables. Verify that the corresponding mean and variance of Y τ
[t/τ ] indeed

converge to its Ornstein-Uhlenbeck counterpart, i.e,

E[Y τ
[t/τ ]]→ E[Xt] and V ar[Y τ

[t/τ ]]→ V ar[Xt] as τ → 0,

where [x] denotes the integer part of x.
Note: It can be shown that the rescaled process Y τ

[t/τ ] converges weakly to the
Ornstein-Uhlenbeck process Xt as τ → 0.

4. Consider again the Ornstein-Uhlenbeck process X in the setting of Ex 2-3.

a) Show that for any T > 0 the distribution of XT is given by

XT ∼ N
(
xe−λT + ν(1− e−λT ),

σ2

2λ
(1− e−2λT )

)
by proceeding as follows:

• Show in general for arbitrary T > 0, that if

f : [0, T ] −→ R ∈ C0([0, T ]),

then
∫ T

0

f(s)dWs ∼ N
(

0,

∫ T

0

(f(s))2ds

)
. (4)

Siehe nächstes Blatt!



• Conclude the statement using the first step and Ex 2-3 b).

Hint: For the first point approximate the process by simple functions, then use
Lévy’s continuity theorem and the fact that the characteristic function of a ran-
dom variable uniquely characterizes its distribution.

b) Compute E[X+
T ] explicitly

5. Matlab Implementation Given a finite time horizon T = 1, the aim of this exercise
is to simulate the Ornstein-Uhlenbeck process and the Cox-Ingersoll-Ross process on
the time interval [0, T ] using the Euler-Maruyama scheme. We define an equidistant
decomposition {0 = t0 < . . . < tn = T} of the interval [0, T ] by setting

ti :=
i

M
T, i = 0, . . . ,M = 103.

If X is a process on the interval [0, T ] satisfying the stochastic differential equation

dXt = a(t,Xt)dt+ b(t,Xt)dWt

with initial condition X0 = x for an x ∈ R, and t0 = 0 < t1 < . . . < tM = T is a gi-
ven discretization of the time interval [0, T ], then an Euler-Maruyama approximation2

of X is given by the iterative scheme: X0 = x and

Xti+1
= Xti + a(ti, Xti)(ti+1 − ti) + b(ti, Xti)(Wti+1

−Wti), i = 0, . . . ,M − 1.

a) Simulate 10 sample paths of the OU-processX from Ex 2-3 with λ = 1, ν = 1.2,
σ = 0.3 and X0 = 1.

b) Use Monte-Carlo simulation (N = 105) to compute E[X1],E[X2
1 ],E[X+

1 ]

c) Consider the Cox-Ingersoll-Ross process Y defined by the following SDE:

dYt = λ(ν − Yt)dt+ σ
√
YtdWt, Y0 = y.

Assuming 2λν ≥ σ2 repeat the tasks (a) and (b) for the CIR process. Is there a
potential problem for the simulation procedure?

2As a reference for the Euler-Maruyama approximation see for example Section 3.2 of Numerical Solu-
tion of SDE Through Computer Experiments (Kloeden, Platen, Schurz).


