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1. a) Since the process (7¢):>0 satisfies the equation

r(t) =ro+ /Ot(a —br(s))ds + J/Ot Vr(s)dWs, t>0, (1)

the conditional probability distribution of r (cf. Ex 3-3) is known and hence ex-
pectation can be computed by a straightforward integration. Here, we also consi-
der an alternative method by showing that the stochastic integral is a true martin-
gale.! We verify that

e[ [ rons] = [ Birsjas < o @

where we have used Tonelli’s Theorem in the first step. Indeed, given 7 the
random variable ¢;r(t) follows a non-central y?— distribution with degree of
freedom k := 4a/0? and non-centrality parameter \(t) := c,roe %" with ¢, 1=
4b/(0?(1 — e~/%)). Since the function ¢ is continuous and the distribution is
x> we note that s — E[r(s)] is also continuous and hence (2) is satisfied. Now,
taking expectation in (1) yields

E[r(t)] =ro + /0 (a — bE[r(s)])ds.

Therefore, the function ¢ : Ry — R given by ¢(t) = E[r(¢)] satisfies the ordi-
nary differential equation

{@'(t) = a—bp(t),
©(0) = ro.

I'This alternative method might be quite useful if the distribution of the solution of certain SDE is
not easy to compute (e.g., Shiryaev-Roberts SDE). Then, some other tricks might be needed to show the
integrability condition (2).
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b)

The solution of this ordinary differential equation is given by

t
©(t) = roe " + a/ e =3 ds = roe ™ + g(1 —
0

b
Hence, .
Jim Elr(0)] = 3
Using It6’s formula, we find that the process

T’(t) — Toe(ﬂ—0'2/2)t+0'W(t)’ t Z O

is a solution for the stochastic differential equation

t t
r(t) =10+ 5/ r(s)ds + O'/ rsdW (s)
0 0
with initial value ro € R and constants 3, 0 € R. Therefore,
E[r(t)] = E [roe(ﬁwz/?)tww(t)}

_ ToeﬁtE [67(02/2)(t)+0W(t)}

= Toeﬁt.

Ast — oo, we have the following asymptotic behavior:

— 0, for (<0,
E[rd § =1y, for B=0,
diverges , for [ > 0.

By Proposition 6.1 the short rate process related to the HIM forward rate dyna-
mics
t t
f&,T)=f0,T)+ / a(s, T)ds + / o(s, T)dW*(s)
0 0
is given by
t t
r(t) =r(0) + / C(u)du + / o(u, u)dW*(u),
0 0
where

C(u) = a(u,u) + 0, f(0,u) + /Ou 8ua(s,u)ds+/0u Buo (s, u)dW*(s). (4)
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The short rate dynamics in the Hull-White-extended Vasic¢ek model

r(t) =r(0) + /Ot(b(u) + fr(u))du + /Ot odW*(t) 3)

a priori only determine the volatility process of the short rate process related
to the given HIM forward rate dynamics to be o(u,u) = 0. We claim that the
general HIM forward rate volatility is given by o(t, T) = ce®T=" for all 0 <
t < T. This can be verified as follows: In general, it holds by definition? of the
instantaneous forward rate that

f(t,T) = —% log(P(t,T)), forall 0<t<T. (6)

Furthermore, we know from the lecture, that the model provides an affine term-
structure, therefore we have

P(t,T) = exp(—A(t,T) — B(t, T)r(t)) %

for the bond prices, where the functions A and B are known, and combining (6)
and (7) we find

f(t,T)=0rAt,T)+ 0rB(t,T)r(t), forall 0<t<T.
With
B(t,T) = %(e’g(Tt) —1) (®)

thus,
OrB(t,T) = /T, ©)
it follows in particular, that we have an expression of the form?
f,T) = (...) + T Dr(t) (10)

for the forward curve related to r(¢), where the term (. ..) is of finite variation.
Applying It6’s formula to the function f(z,t) = wxe', yields that the explicit
solution to the stochastic differential equation (5) is

t t
r(t) = T(O)eﬁt + / e_ﬁ(s_t)b(s)ds + / ae_ﬁ(s_t)dW*(s).
0 0

Together with (10) we find that

0(s5,T) = 0P T Ve B~ — 5ePT=5)  forall 0<s<T, (11)

2See: equation (2.1) in Filipovié, T.S.M.
3See also: equation (5.12) of Filipovi¢, T.S.M.
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as claimed. Under the assumption that the HIM drift condition is satisfed, (11)
already determines the drift term (4) in the short rate process (3):
If the HIM drift condition is satisfed, then

T
a(s, T) = U(S,T)/ o(s,u)du, forall 0<s<T

T
W) 2 p(7-s) / 5= gy,
(2T =) _ (B(T=5))
B

and thus the drift-term (4) becomes

C(u) - auf(07 u) + / (20’2626(u_8) — 0'265(“_5)) ds + B/ UBB(U_S)dW*(S)_
0 0
(12)

Now by definition r(t) = f(¢,t), therefore
r(u) = f(u,u) = f(0,u) + /“ a(s,u)ds + /ua(s,u)dW*(s)
0 0

u 28(u—s) _ oB(u—s) u
= f(0,u) +/ o’ (e 5 ¢ )ds+/ oA (s),
0 0

therefore,
3 /0 ’ oet SdW*(s) = fr(u) — Bf(0,u) — /0 ’ o2 (e2P=s) _ Plu=s)ds. (13)

Combining (13) and (12) yields

bu) = C(0) = Br) = 2,1 00) + [ eI = 5f(0,)

2
= 8,£(0,u) — BF(0,u) + ;—B(e%“ ~1), forall wu>0.

(14)

Hence by choosing the initial forward curve to be f*(0,u) = —8% log(P*(0,u)),

the Hull-White extended Vasi¢ek model with b(u) as in (14), gives a perfect fit to
the initial bond curve P*(0,u), u > 0.

b) Let T'— f*(0,7) be the initial forward rate curve

£7(0,T7) = —0rlog P*(0,T).
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In order to fit the initial bond prices, we must have
f*(oa T) = aT‘4(07 T) + 6TB(O7 T)TO

We have seen in the lecture that the correponding functions in the affine term-
structure are

A(0,T) = _";/T BQ(s,T)der/Tb(s)B(s,T)ds,
%(eﬁT - 1)7

with derivatives 97 B(0, T') = €T and

B(0,T) =

T
orA(0,7) ——/ —B2 (s,T) d3+/ b(s)0rB(s,T)ds
0

2 T
= —/ —32 (s,T) ds—l—/ b(s)ePT=)ds = —%BQ(O,T) —i—/ b(s)ePT=)ds
0 0

T
= 252(6” 1)2+/0 b(s)ePT=*)ds.

Therefore, defining the functions

o(T) = ;‘-BQW — 1),

T
o(T) = / b(s)e’T=9ds + e/
0
we arrive at

f10,T) = —g(T) + o(T).
The function ¢ satisfies the ordinary differential equation
Oro(T) = Po(T) +b(T)
¢(0) = To.

It follows that

b(T) = 0ro(T) — po(T)
= dr(f*(0,T) + g(T)) = B(f*(0,T) + g(T))

2
— 0 f*(0,T) — Bf*(0,T) + ;’—ﬁww —1).
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b)

P(0,1) = ¢ /O — =004

)

P(0,2) = ¢ /OD=102) — o~0.08

P(O,?)) — e—f(o,l)—f(O,Q)—f(O,fi) — 6—0.12.
Similarly,
P(1,1)(wy) =1,
P(l, (Wl) —_ 670.06’
P(1,3)(w) = e,
and
P 5 )(WQ) = 1,
P 17 2 (WQ) - 6_0 027
P(1,3)(wy) = e "%
The matrix
P(0,1) P(0,2) P(0,3) 004 =008 o—0.12
A= P(1,1)(w) P(1,2)(w1) P(1,3)(w1) | = 1 e 006 012
P(1,1)(w2) P(1,2)(wa2) P(1,3)(ws) 1 002 7004

resulting from these values has the nonvanishing determinant

det(A) 26_0'046_0'066_0'04 + 6—0.086—0.12 + 6—0.026—0.12
o 6_0'066_0'12 - 6—0.026—0.126—0.04 o 6_0'086_0'04 7& 0.

Therefore, the matrix A is invertible.

The arbitrage strategy we seek, is a predictable process ¢ = (¢'(n), ¢*(n), *(n))n=1.2,
such that the following requirements hold

V(0) =0 (*)
V(1) (wi) = Z ¢ (1)(P(1,4))(wr) = 1 (%)

V(1)(w2) = ZW(Z’)(P(L i) (wz) =1 (%)
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By the self-financing condition (s-f.c.), we furthermore have on ¢ the requirement

3

V(1) = V(0) =) ¢'(i)(P(L,i) — P(0,4)). (s-f.c.)

=1

The self-financig condition together with (x) yields
> 6 (P(0,1) = 0. (%)

Therefore, it remains to find a vector ¢(1) = (¢'(1), ¢*(1),¢*(1))", such that

P(0,1) P(0,2) P(0,3) o' (1) 0
P(L1)(wr) P(1,2)(wr) P(1,3)(wn) (1) | =11
P(L1)(w2) P(1,2)(w2) P(1,3)(w2) ¢*(1) 1

In this system of equations the third and second lines follow from (***) and (**),
and the first line follows from (****). Since by part a), the matrix A is invertible,
the above vector is given by

¢'(1) 0
(1) | =A1 1
¢*(1) 1

In the general HIM setup we have

t t
f&,T)=f(0,T) +/ a(s,T)ds +/ o(s, T)dW(s), t<T
0 0
for a given initial forward curve 7" — f(0, 7). The HIM drift condition
b(t, T) = —v(t,T)y(t) forall T, dP® dt — a.s., (15)

where

and
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If the HIM drift condition (15) is satisfied, the dynamics of the forward rate under
the equivalent local martingale measure Q become:

T T t
f(t,T)= f(0,T) +/ (0(3,T)/ J(s,u)du) ds+/ o(s, T)dW™(s).
0 s 0 (16)
In our current setting we have

f,T) = h(T—1t)+ [{b(s)ds + [} o(s)dW*(s), 0<t<T
£(0,T) = h(T) t=0.

Therefore, o(s,T) = o(s). Assuming that the HIM drift condition holds, (16)
yields

£(0,7) + /Ot 0*(s)(T — s)ds = h(T —t) + /Ot b(s)ds.

Solving for £, the above becomes

t t
T —t)= f(0,7T) +/ 0*(s)(T — s)ds — / b(s)ds. (17)
0 0
Taking the derivative with respect to ¢ on both sides gives
—Rh(T —t) = o*(t)(T —t) — b(t), forallt,T witht <T,  (18)
and taking the derivative of (18) with respect to 7" on both sides yields
—h"(T —t) = ¢*(t), forallt,T witht <T. (19)

Since the left hand side of (19) only depends on the difference 7" — ¢ and not on
T and t separately, and since the right hand side of (19) is independent of 7, it
follows that equation (19) can only hold for all ¢, T with t < T if ¢? is constant.
Hence, 0?(t) = a. Inserting this into (18) we find

—W(T —t)—a(T —t)=0b(t), forallt,T witht <T,

and the same argument as above yields that b(¢) = b is also constant. Integrating
—h' (T —t) = a(T — t) + b with respcet to t and using (17) with f(0,7) = h(T)
yields

h@—w—h@%i/—M@—Q%

t
:/ a(T'—s)—bds
0
2

t
= (aT —b)t — ag.
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The requirement

t2
W(T =) = h(T) + (aT = bt — a7, forall T witht <T  (20)

implies that the right hand side of (20) may only depend on the difference T — ¢
and not on 7" and ¢ separately. This determines the function h(7) as follows:

WMT) = h(T) + 272 — bT for some appropriately chosen function /. Indeed in

this case, the right hand side of (20) is of the form
t2
T —t) =h(T)+ aTt — bt — az
~ a a a
=h(T) + =T% = bT + -2Tt — bt — —t*
(T)+ 2 * 2 2
—h(T) — g(T — 2 (T — 1),
and along the lines of the previous arguments, since ﬁ(T) does not depend on ¢,
it has to be a constant A(T') = c. Therefore, h(x) = ¢ — %2 + bz, for all z > 0.

b) In the discussion of short-rate models*, we fixed a stochastic basis (2, F, (F;)s>0, Q),
where we assumed Q to be a martingale measure and denoted by W* a one-
dimensional Q-Brownian motion. We have shown above that the HIM drift con-
dition implies that under QQ the forward curve evolution is

f&,T)= fO,T)+at (T —L)+ [y JadW*(s), 0<t<T,
£0,T) = h(T) t=0.

The associated short rate process is given by

r(t) = f(t,t) = f(0,t) + at? +VaW*(t).

2
Setting a = o2 the above corresponds to the Ho-Lee model, which is described
by the dynamics
t
r(t) = / b(s)ds + oW*(t)
0
with
t 0.2t2
/ bs)ds = 0,0)+ - 21
0

In fact, this confirms the results derived in the lecture, where it was shown® that
with the choice of parameters as in (21), the Ho-Lee model indeed gives a perfect
fit to the observed initial forward curve f(0, 7).

4See section 5.2 Diffusion Short-Rate Models, p. 80 ff. of Filipovi¢, T.S.M.
3See also Section 5.4.4 p.89 ff. of Filipovi¢, T.S.M.
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¢) By assumption, the initial forward curve is described by f(0,7") = h(7T) for a
deterministic function 7' — h(7T'), and we have shown above, that if the forward
curve evolution is given by parallel shifts f(¢,7) = h(T — t) + Z(t), then the
HJM drift condition already determines the form of & to be

h(T) = —%TQ FOT + ¢

for some appropriately chosen constants a, b and c. A generic initial forward cur-
ve f(0,T) is an arbitrary function, in particular it is not necessarily of second-
order-polynomial form. If this is not the case, f(0,7") = h(T) leads to a contra-
diction.

5. Matlab File

1 function [valuepde ,valuemc]=bondCIR

2% In this exercise we compute the bond price at time 0
in a CIR shortrate model dr_t= (a—b

3% r_t) dt + \sigma \sqrt(r_t) dW_t

4 tic

5% parameter input

6 % horizon

7 T=10;

8 % sample size

9 Nsimu=10"5;

10 Nplot=Nsimu;

11 % grid points

12M=10"3;

13% volatility

14 sigma=0.04;

15 a=0.0052;

16 b=0.0447,;

17% initial value = r_0

18 r0=0.08;

19% time step

20 dt= T/M;

21

2 9%% Analytical approach

23 gamma = sqrt (b 2+2xsigma”?2);

24 AT= —2xa/(sigma”2)xlog (2xgammaxexp ((gamma+b)xT/2) /((
gamma+b ) x (exp (gammaxT) —1)+2xgamma) ) ;

25 BT= 2x(exp (gammaxT)—1)/((gamma+b ) x(exp (gammaxT) —1)+2x%
gamma) ;

26 valuepde=exp(—AT-BTx*r0) ;
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27

28 %o Monte Carlo approach

29 % BM

30 BM = [zeros(1,Nplot);sqrt(T/M)xcumsum(randn(M, Nplot)) ];

31 CIR = [rOxones(1,Nplot);zeros (M, Nplot) |;

32% Euler Maruyama Scheme

33 for i =1:M

34 CIR(1+1,:)=CIR(i,:)+(a—bxCIR(1,:) )*xdt+ sigma.xsqrt(
CIR(i,:)).«(BM(i+1,:)-BM(i,:));

35 end

36

37 mean(CIR (end ,:) )

38 var (CIR(end ,:) )

39

40 integral = zeros(1,Nsimu);

41 intgrid= 0:dt:T;

42 for j= 1:Nsimu

43 9% use trapezoidal rule
44 integral (j)= trapz(intgrid ,CIR(:,]));
45 end

46 % take the expectation
47 valuemc= mean(exp(—integral));
43 toc

6. Matlab File

1 function valuemc=bondDothan

2% In this exercise we compute the bond price at time 0
in a Dothan

3% shortrate model dr_t = beta r_t dt + sigma r_t d W_t

4 tic

59 parameter input

6 % horizon

7 T=10;

8 % sample size

9 Nsimu=10"5;

10 Nplot=Nsimu;

11 % grid points

12M=10"3;

13% volatility

14 sigma=0.8355;

15 beta=—-0.4454;
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16 % initial value = r_0

17 r0=0.08;

18 % time step

19 dt= T/M;

20

21 % No closed form solution available

22

23 %o Monte Carlo approach

24 % BM

25BM = [zeros(1,Nplot);sqrt(T/M)+cumsum(randn (M, Nplot)) |;

26 Dothan = [rOxones(1,Nplot);zeros (M, Nplot) ];

27 % Euler Maruyama Scheme

28 for i =1:M

29 Dothan(i+1,:)=Dothan(i,:)+ betaxDothan(i,:)xdt+
sigma.* Dothan(i,:) .«(BM(i+1,:)-BM(i,:));

30 end

31

32 mean(Dothan(end ,:))

33 var (Dothan(end ,:))

34

35 integral = zeros (1l ,Nsimu);

36 intgrid= 0:dt:T;

37 for j= 1:Nsimu

38 9% use trapezoidal rule
39 integral (j)= trapz(intgrid ,Dothan(:,j));
40 end

41 % take the expectation
42 valuemc= mean(exp(—integral));
43 toc



