ETH Zürich	D-MATH	Introduction to Lie Groups
Prof. Dr. Urs Lang	Alexandru Sava	October 1, 2014

Exercise Sheet 2

Exercise 1

Let G be a locally compact topological group, and let μ be a left Haar measure on G.

- (a) G is discrete if and only if $\mu(\{e\}) > 0$.
- (b) G is compact if and only if $\mu(G) < \infty$.

Exercise 2

Find an example of a locally compact topological group that contains a Borel set with finite left Haar measure but infinite right Haar measure.

Exercise 3

Prove that the modular function $\Delta: G \to (0,\infty)$ (introduced in class) is a continuous homomorphism.

Exercise 4

Consider the locally compact Hausdorff group $G = (\mathbb{R}^n, +)$ where $n \in \mathbb{N}_0$.

- (i) Show that $\operatorname{Aut}(G)$, i.e. the group of bijective homomorphisms which are homeomorphisms as well, is given by $\operatorname{GL}(n, \mathbb{R})$.
- (ii) Show that $\operatorname{mod}_G : \operatorname{Aut}(G) \to \mathbb{R}_{>0}$ is given by $\alpha \mapsto |\det \alpha|^{-1}$.