Exercise Sheet 3

Exercise 1

- (i) Let G be a topological group and let H be a subgroup of G. Equip G/H with the quotient topology. Show that G is connected if both H and G/H are connected.
- (ii) Show that SO(n) is connected for all $n \in \mathbb{N}$.

A similar argument works for SU(n).

Exercise 2

Let $G = \operatorname{SL}(2, \mathbb{R})$ act on $\mathbb{H} = \{x + iy \in \mathbb{C} \mid y > 0\}$ via fractional linear transformations. Show that this action is transitive, $\operatorname{Stab}_G(i) = \operatorname{SO}(2, \mathbb{R}) =: H$ and that the induced isomorphism of *G*-spaces $G/H \cong \mathbb{H}$ is a homeomorphism.

Exercise 3

Consider the action of $\mathrm{SL}(2,\mathbb{R})$ on $\mathbb{RP}^1 = \{V : V \text{ is a 1-dimensional subspace of } \mathbb{R}^2\}$ given by g.V := gV ($g \in \mathrm{SL}(2,\mathbb{R})$, $V \in \mathbb{RP}^1$). Show directly or by means of Weil's Theorem (Theorem 1.11 in class) that there is no non-trivial Radon measure on \mathbb{RP}^1 that is invariant under the above action of $\mathrm{SL}(2,\mathbb{R})$.

Exercise 4

Let G be a *compact* Hausdorff group with left Haar measure μ_G and let H < G be a closed subgroup of G with left Haar measure μ_H . Show that the proof of Weil's theorem produces the following G-invariant Radon measure $\mu_{G/H}$ on G/H: For all Borel sets $E \subseteq G/H$,

$$\mu_{G/H}(E) = \frac{\mu_G(\pi^{-1}(E))}{\mu_H(H)}$$
, in particular $\mu_{G/H}(G/H) = \frac{\mu_G(G)}{\mu_H(H)}$.