ETH Zürich	D-MATH	Introduction to Lie Groups
Prof. Dr. Urs Lang	Alexandru Sava	October 29, 2014

Exercise Sheet 4

Exercise 1

Let G be a connected topological group. Show that every neighborhood of the identity element e generates G as an abstract group.

Exercise 2

- (a) Show that the Lie groups $S^3 = Sp(1)$ and SU(2) are isomorphic.
- (b) Show that the Lie groups $S^3/\{1, -1\}$ and SO(3) are isomorphic.

Exercise 3

Show that for two left-invariant vector fields X, Y on $GL(n, \mathbb{R}), [X, Y]_e = X_e Y_e - X_e Y_e$ (matrix product).

Exercise 4

Show that the Lie algebra \mathbb{R}^3 with the bracket given by the vector cross product is isomorphic to the Lie algebra of $O(3, \mathbb{R})$.