Exercise Sheet 7

Exercise 1

Show that every n-dimensional connected abelian Lie group is isomorphic to $(S^1)^r \times \mathbb{R}^{n-r}$ for some $0 \le r \le n$.

Exercise 2

Prove the following basic properties of ideals of a Lie algebra \mathfrak{g} :

- (a) If \mathfrak{a} and \mathfrak{b} are ideals of \mathfrak{g} , so are $\mathfrak{a} + \mathfrak{b}$ and $[\mathfrak{a}, \mathfrak{b}]$ (the subspace generated by all [A, B] with $A \in \mathfrak{a}$ and $B \in \mathfrak{b}$).
- (b) If $\phi \colon \mathfrak{g} \to \mathfrak{h}$ is a Lie algebra homomorphism, then $ker(\phi)$ is an ideal of \mathfrak{g} and $\mathfrak{g}/\ker(\phi)$ is isomorphic to $\phi(\mathfrak{g})$.
- (c) If \mathfrak{a} and \mathfrak{b} are ideals of \mathfrak{g} with $\mathfrak{a} \subset \mathfrak{b}$, then $\mathfrak{g}/\mathfrak{b}$ is isomorphic to $(\mathfrak{g}/\mathfrak{a})/(\mathfrak{b}/\mathfrak{a})$.
- (d) If \mathfrak{a} is a subalgebra of \mathfrak{g} and \mathfrak{b} is an ideal of \mathfrak{g} , then $\mathfrak{a} \cap \mathfrak{b}$ is an ideal of \mathfrak{a} , \mathfrak{b} is an ideal of $\mathfrak{a} + \mathfrak{b}$, and $\mathfrak{a}/(\mathfrak{a} \cap \mathfrak{b})$ is isomorphic to $(\mathfrak{a} + \mathfrak{b})/\mathfrak{b}$.

Exercise 3

Consider the Heisenberg group

$$G := \left\{ \begin{pmatrix} \begin{pmatrix} 1 & x & z \\ & 1 & y \\ & & 1 \end{pmatrix} \right\} : x, y, z \in \mathbb{R} \right\} \subseteq \operatorname{GL}(3, \mathbb{R})$$

and the subgroup

$$H := \left\{ \left(\begin{pmatrix} 1 & 0 & m \\ & 1 & 0 \\ & & 1 \end{pmatrix} \right) : m \in \mathbb{Z} \right\}$$

of G. Check that G/H is a connected, solvable Lie group and show that G/H does not admit a smooth, injective homomorphism into $\mathrm{GL}(V)$ for any finite-dimensional \mathbb{C} -vector space V.

Exercise 4

Prove that the Lie group Aff(1) of the affine transformations of the real line is solvable but not nilpotent.