Mathematical Foundations For Finance

Exercise Sheet 11

Please hand in by Wednesday, 3/12/2013, 13:00, into the assistant's box next to office HG E 65.2.

Exercise 11-1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with a filtration $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$. We consider a Poisson process $(N_t)_{t \geq 0}$ with intensity parameter $\lambda > 0$.

- (a) Compute the characteristic function of N_t .
- (b) Show that the sequence of random variables $\left(\frac{1}{\sqrt{c}}(N_{ct} \lambda ct)\right)_{c \in \mathbb{N} \setminus \{0\}}$ converges in law to a normal random variable X_t with mean 0 and variance λt .
- (c) Assume that the sequence of processes $\left(\left(\frac{1}{\sqrt{c}}\left(N_{ct}-\lambda ct\right)\right)_{t\geqslant 0}\right)_{c\in\mathbb{N}\setminus\{0\}}$ converges almost surely to a process $(X_t)_{t\geqslant 0}$. Prove that the process X has independent increments.

Exercise 11-2. Let $W = (W_t)_{t\geq 0}$ be a Brownian motion with respect to a probability measure \mathbb{P} and a filtration $\mathbb{F} = (\mathcal{F}_t)_{t\geq 0}$. Starting from Itô's formula, decide for each of the following processes whether or not they are (\mathbb{P}, \mathbb{F}) -martingales:

- (a) $X_t^{(1)} := W_t^p ptW_t, t \ge 0, \text{ and } p \ge 2.$
- (b) $X_t^{(2)} := \exp\left(\frac{1}{2}\alpha^2 t\right)\cos\left(\alpha\left(W_t \beta\right)\right), \ t \ge 0, \text{ where } \alpha \ne 0 \text{ and } \beta \in \mathbb{R}.$
- (c) $X_t^{(3)} := \sin W_t \cos W_t, \ t \ge 0.$

Exercise 11-3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, W a Brownian motion and $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$ the augmented filtration generated by W. We consider the Black-Scholes model, with r = 0. The stock price process is given by:

$$S_t = S_0 \exp\left(\left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma W_t\right). \tag{1}$$

The purpose of this exercise is to find the probability change that makes S a martingale.

- (a) Compute $\mathbb{E}[S_t \mid \mathcal{F}_s]$ for $0 \leq s < t$.
- (b) We define the process Z by $Z_t = \exp\left(-\frac{\mu}{\sigma}W_t \frac{\mu^2}{2\sigma^2}t\right)$. Prove that this process is a positive martingale under \mathbb{P} , and that $\mathbb{E}\left[Z_t\right] = 1$ for all $t \in [0,T]$.
- (c) Define \mathbb{Q} as the probability measure whose density process with respect to \mathbb{P} is Z. Prove that the process \widetilde{W} defined by $\widetilde{W}_t = W_t + \frac{\mu}{\sigma}t$ is a \mathbb{Q} -Brownian motion. Prove then that S is a martingale under \mathbb{Q} .