Mathematical Foundations For Finance

Exercise Sheet 8

Please hand in by Wednesday, 12/11/2014, 13:00, into the assistant's box next to office HG E 65.2.

Exercise 8-1. We work on a binomial model; the risky and riskless asset have the following price processes:

$$\widetilde{S_k^1} = \widetilde{S_0^1} \prod_{i=1}^k Y_i$$
, and, $\widetilde{S_k^0} = (1+r)^k$ for $k \in \{0, 1, ..., T\}$,

where the Y_i 's are i.i.d and take values in $\{1+d,1+u\}$. Consider a contingent claim of the form $\widetilde{H} = \widetilde{h}(\widetilde{S}_T^1)$, where $\widetilde{h} : \mathbb{R}_+ \to \mathbb{R}_+$ is a Borel measurable function. For simplicity, we denote by \mathbb{Q} the unique martingale measure for the discounted model S^1 . By Corollary 2.2.3 in the lecture notes, this model is arbitrage-free and complete. Therefore, there exists a self-financing trading strategy $\varphi = (V_0^H, \vartheta)$ such that

$$\widetilde{V}_T^{\widetilde{H}} = \widetilde{S}_T^0 \left(V_0^H + G_T(\vartheta) \right) = \widetilde{H}$$
 P-a.s..

(a) Show that there exists a measurable function $\tilde{v}:\{0,\ldots,T\}\times\mathbb{R}_+\to\mathbb{R}_+$ such that

$$\widetilde{V}_k^{\widetilde{H}} = \widetilde{v}(k, \widetilde{S}_k^1)$$
 P-a.s. for $k = 0, \dots, T$.

Moreover, show that this value function \tilde{v} fulfills the recursive scheme

$$\begin{cases} \widetilde{v}(T,x) &= \widetilde{h}(x), \\ \widetilde{v}(k-1,x) &= \frac{q\widetilde{v}(k,x(1+u)) + (1-q)\widetilde{v}(k,x(1+d))}{1+r} & \text{for } k = 1,\dots,T, \ x \in \mathbb{R}_+. \end{cases}$$

(b) Show that there exists a measurable function $\widetilde{\xi}: \{1, \dots, T\} \times \mathbb{R}_+ \to \mathbb{R}$ such that

$$\vartheta_k = \widetilde{\xi}(k, \widetilde{S}_{k-1}^1)$$
 P-a.s. for $k = 1, \dots, T$.

Moreover, show that the function $\tilde{\xi}$ is given by

$$\widetilde{\xi}(k,x) = \frac{\widetilde{v}(k,x(1+u)) - \widetilde{v}(k,x(1+d))}{(u-d)x}.$$

(c) If the function \widetilde{h} is *convex*, show that for each k the function $x \mapsto \widetilde{v}(k, x)$ is convex as well. If \widetilde{h} is increasing, show that $\widetilde{\xi} \geq 0$. What is the financial interpretation of the latter property?

Exercise 8-2. Let $(\widetilde{S}^0, \widetilde{S}^1)$ be a one-period *trinomial model* on the canonical space and assume that u > m > d > -1, r = m and $\widetilde{S}_0^1 = s_0 > 0$.

(a) Compute the set of all arbitrage-free prices for a binary cash-or-nothing call option with strike $s_0(1+r)$ whose payoff is given by

$$\widetilde{H}^b := \mathbb{1}_{\{\widetilde{S}^1_1 > s_0(1+r)\}}.$$

Show that \widetilde{H}^b is not attainable in this market.

Hint: Use Theorem 3.1.2 in the lecture notes.

Mathematical Foundations For Finance

(b) Let $\widetilde{H}^{C(K)}$ be a European call option with strike $K \geq 0$ whose payoff is given by

$$\widetilde{H}^{C(K)} := (\widetilde{S}_1^1 - K)^+.$$

Determine all $K \geq 0$ for which $\widetilde{H}^{C(K)}$ is attainable.

(c) Let $\widetilde{H} \in L^0_+(\mathcal{F}_1)$ be an undiscounted payoff that is attainable with $V_0^{\widetilde{H}} \neq 0$. Define the return of \widetilde{H} by

$$R^{\widetilde{H}}:=\frac{\widetilde{H}-V_0^{\widetilde{H}}}{V_0^{\widetilde{H}}}=\frac{\widetilde{H}}{V_0^{\widetilde{H}}}-1.$$

Show that every equivalent martingale measure \mathbb{Q} for S^1 satisfies

$$\mathbb{E}_{\mathbb{Q}}\left[R^{\widetilde{H}}\right] = r \quad \text{and} \quad \mathbb{E}_{\mathbb{P}}\left[R^{\widetilde{H}}\right] = r - \text{Cov}_{\mathbb{P}}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}, R^{\widetilde{H}}\right],$$

where $Cov_{\mathbb{P}}$ denotes the covariance under \mathbb{P} .

Exercise 8-3. Let $(\widetilde{S}^0, \widetilde{S}^1)$ be an undiscounted multinomial model with $m \geq 3$ states. Assume that T = 1 and $y_1 < r < y_m$. Denote by $\mathbb{P}_e(S^1)$ the set of all equivalent martingale measures for S^1 on \mathcal{F}_1 and let $C : \mathbb{R}_+ \to \mathbb{R}_+$ be a *convex* discounted payoff function.

(a) Show that for all $\mathbb{Q} \in \mathbb{P}_e(S^1)$, we have

$$C(S_0^1) \leq \mathbb{E}_{\mathbb{Q}}\left[C(S_1^1)\right] \leq \frac{y_m - r}{y_m - y_1} C\left(\frac{1 + y_1}{1 + r} S_0^1\right) + \frac{r - y_1}{y_m - y_1} C\left(\frac{1 + y_m}{1 + r} S_0^1\right) \,.$$

In particular, show that either both inequalities are strict or both equalities. Give an economic interpretation of the above formula.

Hint. Distinguish the two cases that C is linear or not linear on $\left[\frac{1+y_1}{1+r}S_0^1, \frac{1+y_m}{1+r}S_0^1\right]$. Drawing a picture might be useful.

(b) Show that the upper bound in (a) is sharp, i.e.,

$$\sup_{\mathbb{Q} \in \mathbb{P}_{e}(S^{1})} \mathbb{E}_{\mathbb{Q}} \left[C(S^{1}_{1}) \right] = \frac{y_{m} - r}{y_{m} - y_{1}} C\left(\frac{1 + y_{1}}{1 + r} S^{1}_{0} \right) + \frac{r - y_{1}}{y_{m} - y_{1}} C\left(\frac{1 + y_{m}}{1 + r} S^{1}_{0} \right).$$

(c) Suppose there exists $k \in \{2, ..., m-1\}$ with $y_k = r$. Show that the lower bound in (a) is sharp as well, i.e.,

$$\inf_{\mathbb{Q}\in\mathbb{P}_e(S^1)}\mathbb{E}_{\mathbb{Q}}\left[C(S_1^1)\right] = C(S_0^1).$$

(d) Is the payoff $H = C(S_1^1)$ attainable?

Exercise 8-4. In this exercise we want to compare the price of a European put option and an American put option over time (and verify that the price process of these two options can be different). We consider a binomial model with T=4 periods, $S_0^1=100$, K=150, u=-d=0.2 and r=0.1.

- (a) Simulate the binomial market price tree and compute the option prices at each node as well as the replicating strategy.
- (b) Change the strike to K = 80. What do you observe?
- (c) Change the strike to K = 50. What do you observe?