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Exercise Sheet 14 (with Solutions)

Exercise 14-1. Let T > 0 be a fixed time horizon and (2, 7,P) a complete probability space
with filtration IF = (F)se[o,1) satisfying the usual assumptions. Let W = (W}).ep0,1) be a (P, TF)-
Brownian motion and N = (N¢);c(o,7) an independent (P, IF)-Poisson process with parameter A > 0.
Consider a discounted stock price S = (S¢)¢e[o,r) defined by

1
St = exp (O’Wt + 10g(1 + H)Nt + (M - 50’2 - K)A) t> s

where p € R, k > —1, and ¢ > 0.

(a) Use Itd’s formula to show that
s, = S, (udt+ath + ﬁdﬁt> . Sy =1,

where Nt := N; — At is the compensated Poisson process.
Hint. Define S¢ := eoWrt(n=1/20)t gnq §d .— elos(l+r)Ne=r)t g6 that § = 554,
(b) Define the strictly positive (P, F)-martingale Z := £(—u/ocW') and the equivalent probability
measure Q via dQ/dP := Zr.
Argue in detail that N is a (Q,F)-Poisson process with same parameter A. Conclude that S

is a local (Q, IF)-martingale with dynamics

ds, =S, (a dw2 + ndNt) ,

where (WtQ)te[O,T]a W2 =W, + p/o t, is a (Q, F)-Brownian motion.

Hint. Recall the definition of a Poisson process relative to (IP,F) and check the conditions
separately. You may use the following fact:

A random variable X and a o-field G are independent if and only if E [f(X)|G] = E[f(X)]
for all bounded Borel functions f : R — RR.

(c) Let @ € R. Compute Eq [(ST)?].
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Solution 14-1.  (a) Define (as given in the hint) the two auxiliary processes

Sy ==exp (aWt + (u - ;ﬁ) t) and S := exp (log(1 + &) Ny — KAL) (1)

The process S€ is a geometric Brownian motion. By writing Wt(g’“ ) = oWy 4+ ut, we have
that S¢ = £(W(*#)) and hence by Itd’s formula:

dse = §¢dW@H) = §¢(g dW + pdt). (2)
We notice that if f : R — R is in C?, a, 8 € R and the semimartingale X = (X;);>¢ is given
by X; = at + BNy, then formula (6.1.7) in the lecture notes simplifies to
t
O =10 +a [ Py Y (705 - £x0).
0 0<s<t

Indeed, using the formula at the bottom of page 89 in the lecture notes and the fact that
the quadratic variation process of the compensated Poisson process N is N, we get: [X], =

ZO<s§t B (ANS)Q = EO<SSt(AXt)2-
We obtain:

t
St =1— / Sd - Sd— gd_
P =1—KA ; du + Z(u u)

0<u<t

t
:1—;<;A/ Si_du+r Y SiAN,
0

O0<u<t

t t
:1—@/ Sd_du—i—/@/ S¢_dn,
0 0

t
= 1+n/ S?_dN,,.
0
One can also write in differential notation
ds? = kS% dN. (3)

The next step is to apply the product rule to S = S¢S?. To that end, we need to have a
formula for [S¢, S9]. By the formula for quadratic variations (see LN p. 86 bottom), we have

t
[5¢, 8%, = / Sesd dwem N,,.
0

By definition of [+, «] for semimartingales (see LN p. 89 bottom), we have

(WEm Ny = > AWSTHAN, =0

0<u<t
and consequently [S¢, S% = 0. Applying now the product rule to S finally yields
ds = 5% dse + S¢ds?
= 5°5% (g dW + pdt) + £S°S? AN
=5_ (udtJradWJr nd]v) .
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We recall from Exercise 10-1 the definition of a Poisson process (here for finite time horizon).

A (P,TF)-Poisson process with parameter X > 0 is a (real-valued) stochastic process N =
(Nt)tejo,r) which is F-adapted, starts at 0 (i.e. Ng = 0 P-a.s.) and satisfies the following two
properties:

(PP1) For 0 <t <t+ h <T, the increment Niyp — Ny is independent (under P) of F; and
is (under P) Poisson-distributed with parameter \h, i.e.

Ah)¥
( k!) e M keNg.

P[Nt+h - Nt = ]ﬂ] ==

(PP2) N is a counting process with jumps of size 1, i.e. for P-almost all w, the function
t — Ni(w) is right-continuous with left limits (RCLL), piecewise constant and Nj-
valued, and increases by jumps of size 1.

We check the conditions separately. Since N is a (P, F)-Poisson process and since Q is
equivalent to P, N fulfills (PP2) under the measure Q, Ny = 0 Q-a.s. (trivially) and N is
F-adapted. It remains to check (PP1).

To that end, we fix 0 <t < t+ h < T and and bounded Borel function f : R — R. Using
the (P-)independence of N and W, that Wy, — W; (or rather Z;yp,/Z:) and Nyip — Ny are
(P)-independent of F; and Bayes’ rule (see LN Lemma 6.2.1 2) p. 105) yields

[ Zy i,

Eq [f(Ntxn — Ni¢) | Fe] = E 7, f(Niwn — Ni) ]:t} (4)
—E :thth F(Nepn — Nt)] (5)
—5 | 22| B - Vo) (6)
=E[f(Nepn — Ny, (7)

since E [Zy11/Z;) = E[E [Zi41/Z: | Fi]] = 1. Because f was arbitrary, we conclude (by the
hint) that Ny, — N and F; are Q-independent. For the Poisson distribution property, we
take the Borel function f(z) := 1,_;} and insert it in (7):

OB,

Q[Niyn — Ny = k] = E[f(Neyn — Ni)] = P [Ny — Ny = k] =

i.e., Nyip — Ny is Poisson distributed with parameter A\h.

For the SDE part, we note that by Girsanov’s theorem (see LN Theorem 6.2.3 p. 106), W@
is a (Q, F)-Brownian motion and that the SDE of S under Q is given by

dS = S_(pndt + o dW + kdN) = S_(c AW + kdN).

By construction, S = §¢S?, where S¢ and S¢ are from part a). Under Q, we have (according
to part a) and b))

Q_ 1,2 _
S% _ eo'WT 30°T and Stli“ _ elog(l«H@)NT )\HT.
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By P-independence of W and NN, we obtain the formula
Eq [S7] = Eq [(S7)*(57)°]
=E [Zr(57)*(S7)°]
=E[Zr(57)*]E [(57)°]

=Eq[(S7)*]E [(5)°] -

It remains to compute the quantities Eq [(S%)%] and E [(S4)*] separately. We start with
E [(S$)*]. The moment generating function of a Poisson random variable X with parameter
Nis: ¢x (u) = Ep [e*X] = eMe" Y. We have

E [(S%)a] _ e)\T((lJrli)a*l)fa)\liT.
Since W2 ~ N(0,T) under Q, we obtain
Eq [(55)"] = e3T7 (*71.
We finally obtain the formula

E@ [S%] — eT(éaUQ(a—l)—i-/\((l—&-m)”‘—1)—()(»-:,)\).

Exercise 14-2. Let T' > 0 denote a fixed time horizon and let W = (W});c0, 1) be a Brownian
motion on some probability space (22, F,P). Let IF = (F;):eo,1 be the filtration generated by W
and augmented by the P-null sets in o(Ws;0 < s < T). Consider the Black—Scholes model, where
the undiscounted bank account price process S and the undiscounted stock price process St are
given by S0 = ¢ and S} = e"WH‘(“_%)t, 0<t<T,r,u€Rando > 0. Denote by Q* the
unique equivalent martingale measure for S* := S L/ S0 on Fr.

(a) Let §2 = (§t2)t20 be a strictly positive continuous semimartingale with respect to IP and
F, which we interpret as the undiscounted price process of another traded asset. Let ¢; =
(nt,92), t < 0 < T, be a pair of adapted processes whose paths are continuous on [0,7)
for P-almost all w. Set Vi(yp) := 7,59 4+ 9252 and suppose that V;(p) > 0 P-a.s. for all
0 <t <T. Define _

232
and 7rt2 = ?tst , 0<t<T.
Vi(e) Vi(e)

Show that ¢ is self-financing, i.c. Vi(p) = Vo(p) + fot 1 dSO + fot 92dS2 forall 0 <t < T
P-a.s., if and only if we have P-a.s forall 0 <t < T

=
0. mSt
= =

G0 g2
4+ 712 =1 and dﬁ@):w?dﬁ ﬂfdft.
Vi) S St

(b) Now assume that 52 denotes the undiscounted arbitrage-free price process of a European call
option on S! with strike K = 1 and maturity 7. Recall that S7 > 0 P-a.s. for all 0 <t < T
and satisfies IP-a.s. for all 0 <t < T

dS5? = ®(dy)dS} — e T D(dy) dS?,
St =(d1)S} — e TR (d)SY,

Please see next sheet!
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a1l 2
log 5, +((:j%)(T7t) and ® denotes the cdf (distribution function) of a standard

normal random variable. Derive a formula for the self-financing strategy ¢; = (1, 97),
t < 0 < T, that replicates one stock S' by trading only in S° and S2.
Hint: Use part (a).

where d; » =

(¢) Now assume that o = 1. Prove that there exists a random variable X such that
Eq-[(S; - 1)"]=Q*[X <1}, 0<t<T,
and describe the law (distribution) of X under Q*.

Solution 14-2.  (a) The first equation holds by definition for all o = (n,9%) regardless of
whether the strategy is self-financing or not. Next, note that V() is adapNtedNand has
Eontinuous paths on [0,T) for P-almost all w, since the same is true for 1,9, S*, S?. Since
Vip)i
has co~ntinuous and strictly positive paths on [0,T) for P-almost all w, too. In conclusion,
both V() [0,¢] for all t < T. Hence by the
associativity of the stochastic integral we have P-a.s. for all 0 <t < T

AV () = 0, dS? + 92 4S?
~ ~0 dS 99 d5’2
& dVi(p) = Sy —+— gt + 9;5; 5’2
Vi) _ Spme dSP | 0257 57

PN — == - — -
Vilp)  Vilp) SY Vi) S?
W Q0 Q2
& dyt(@) =7 d5; 2 d5; , (8)

Vi) S9 S?

which establishes the claim.

(b) Since 52 > 0 P-a.s. for all 0 < ¢ < T, we have by part (a) P-a.s. forall 0 <t < T

ds?  ,dsp d§1
— =M= T = (9)
S? SY S}

where 70 = —% and 7} = ‘Iﬁﬁ Note that 7! is adapted, strictly positive and

t
continuous on [0, 7). Hence, the same is true for - —r, which is therefore predictable and locally

bounded. By associativity of the stochastic 1ntegral we may deduce that we have P-a.s. for

all0<t<T R -
sy 0459 1 ds? (10)
T 7&1 R
Note that —ﬁ + W—ll = Ll = 1. Now define ¢ = (n,9?) by
t f
~ ‘ﬂ'?
n = Stl <_7T7t1) _ efrT(I)(dQ) (11)
' S0 D(dy)’
Stk 1
92 = = : 12
52 ®(d1) (12)

It follows by part (a) that ¢ = (n,9?) is the desired self-financing strategy.

Please see next page!
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(¢) We know from the lecture that S is given by

Sp=e"iTEt 0<t<T, (13)

)

where W* = (W}*);>0 is a Brownian motion under Q*. Fix ¢ € [0,T]. Using that W} ~
N(0,t) under Q*, we have

1 ot a2
Bl - 0= o [ (1)
— o0

i, (e
= e r_ 1 e 2t dx
2mt /2

1 (@12

= o " e~z dax— QW) >t/2]

= QYW = —t/2] - QW = t/2]

= Q[-t/2 < W <t/2] = Q' [(W))* < t*/4]
2w

e

where X = Y2 and Y ~ N(0,2%). Alternatively, we have X = 47, where Z ~ x3.

Exercise 14-3. Fix a time horizon T € (0, 00) and a probability space (2, F, P) on which there
is a Brownian motion (W;)o<i<r. We take as filtration F = (F;)o<i<r the one generated by W
and augmented by the P-nullsets in o(Ws;s < T). Consider the Black-Scholes model where the
undiscounted bank account and the undiscounted risky asset price are given by

d~0
& = rdt,
SY
dS}
gilt = ,Ltdt + Uth,

t

where p,7 € R and o > 0. We assume that §8 =1 and §6 > 0.
(a) Consider the n-th root of the stock option, given by
H, = (55",
forn €{1,2,...}.

i) Compute the undiscounted arbitrage-free price ‘ZH" at time t.
Hint: E[e'X] = e27°% for X ~ N(0,02).

ii) Find the replicating strategy for PNIn

(b) Let H = (§:1p —1)" be a call option, and denote by ‘Zﬁ its undiscounted arbitrage-free price
at time ¢. Consider the option

~ S if S <1,
J = a1)\2 e ol
(ST) if Sy >1,

Please see next sheet!
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and denote ‘N/tj its undiscounted arbitrage-free price at time ¢. Show that
V> e T (V) 4 S 4 VI

Hint: Use Jensen’s inequality.

Solution 14-3.  (a) i) First, recall that

~ 1
St =85 exp?Wetln—z07)t,

and that
—r
Wy =w,+ 52—
is a Brownian motion under the unique EMM. This will be used in the risk-neutral pricing
formula:
~ = ~.\1/n ~ gl 1/n
i = i ()] ()
t
o =\ 1/ 1 o2
= (8 Eq[exp (ZWr = W)+ ~(u - T)T - 1)) |17]

e (T =D+ % (r=5)(T 1) (5‘3) 1/n]EQ [eXp (%(qu - Wt*)) \ft}

e—r(T—t)—i-%(T’—%)(T_t)e%(T_t) (gtl)

where in the last step we used the hint.

ii) We have,
i 8‘7H" 1 o2 o2 1 /~\1/n—1
effn _ %1:e_r(T_t)""H(T_T)(T_t)em(T_t)—(S;) :
05S; n
~ = = o2 o2 1, /~\1/n
g = T gl gl = et T 0 £ 0 (1 2y (51)

(b) Just plugging in 7" and comparing both sides of the equation for the cases gilp < 1 and g} >1
gives that J = (H)? + S + H. Then

Vil = e Egl| R
e " TUEQ[(H)? + Sp + H|F)]

v

~ 2 ~ ~ ~
efr(Tft) (EQ [H|]:t]) 4 Stl + VtH

_ (Tt (‘ZH)Q + §:1F + ‘ZH
by Jensen’s inequality.

Please see next page!
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Exercise 14-4. Consider a financial market (§0, s 1) consisting of a bank account and one stock.
The movements of the bank account S° and the stock price S!' are described by the following
trees, where the numbers beside the branches denote transition probabilities and where u > d and
d,r > —0.5.

G0 . 1 - >l +r———— (1 +7)(1+2r)
3 (1+w)(1 4 2u)
i 1+u 1
> (1+ u)(1+ 2d)
3’711 1
S 3 (14 d)(1+u)
14d 1

(14+d)(1+4d)

Note that the interest rate is 2r in the second period.

More precisely, let (€2, F,IP) be the probability space with Q := {—1,1}2, F := 2% and the
probability measure IP defined by P [{(z1,22)}] := Pz, Dey 2., Where

1 1
pr=p_1:=- and P11 =pi,—1 =P-1,1 = P-1,-1 = 5

2
Next, consider Y; and Y5 given by
Y1((1,1)) :=Y1((1,-1)) :=1 4 u, Yi1((-1,1)) :=Y1((—-1,-1)) := 1+ d,
Yo((1,1)) := 1+ 2u, Yo((—=1,1)) :=1+4u,
Ya((1,-1)) :=1+2d, Yo((—=1,-1)) :=1+d.

The bank account process S and the stock price process S! are then given by S0 = H§:1(1 +jr)
and §,§ = H?:l Y; for k = 0,1,2, respectively. Finally, the filtration F = (Fo, F1, F2) is defined
by ]:0 = {@,Q}, .Fl = O'(Yl) and .FQ = (T(Yl,YQ) = 29 =F.

(a) Prove in detail that the market (S0, S1) is free of arbitrage if and only if both d < r < u and
d < 2r < u are satisfied.

(b) Suppose that © = 0.02, r = 0.01 and d = —0.01. Give an example of a self-financing strategy
© = (0,9) satisfying P[Va(p) > 1000] = 0.25 and Va(¢) > 0 P-a.s.

(¢) Suppose again that v = 0.02, » = 0.01 and d = —0.01. Does there exist a self-financing
strategy ¢ = (0,9) satisfying V5(¢) > 1000 P-a.s.? Justify your answer by either providing
a concrete example of such a strategy or by formally arguing that such a strategy does not
exist.

Solution 14-4. (a) By the fundamental theorem of asset pricing in discrete time (Theorem
2.2.1 in the lecture notes), the market (S°, S1) is arbitrage-free if and only if there exists an
equivalent martingale measure (EMM) @ for the discounted stock price process S?.

Any probability measure @ equivalent to P on F» can be described by
Q[{(xlv 93'2)}] =4z, 9z, 20,

Please see next sheet!
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where ¢z, qu, 2, € (0,1) satisfying >, o 1y = 1and 30, 0 1y Geye, = 1 for all
r1 € {—1,1}. Next, since Fy is trivial, 71 = o(Y;) and Y; only takes two values, S* is a
Q-martingale if and only if ¢1,¢1,1,¢9-1.1 € (0,1) and

Y; Yo
E =1 d Eg|l——|Yi1=(1 =1
Q[l—l—r] o Q[1—|—2r ! (+“)]
d Fg|-—2 |y (1+d)| =1 (15)
n —_— = =1.
B Ty
This is equivalent to ¢1,¢1,1,¢-1,1 € (0,1) and
r—d
ax(I+u)+1-q)xQ+d=1+r = n=—0
2r — 2d
qax(1+2u)+(1—q1)x(1+2d)=1+2r = Q1= 5—%5
2u — 2d
2r —d
q_171><(1—|—u)—|—(1—q_171)x(1+d)=1—|—27‘ <~ q-1,1 = w_d (16)

In conclusion, the market (S°, 1) is arbitrage-free if and only if

r—d 2r —d
ude(OJ) and ——

€ (0,1) <— d<r<u and d<2r<u. (17)

Note that we have u = 2r, so the market is not free of arbitrage by part (a). The idea is to
short the stock in the case of an “down-movement in the first period. To this end, consider
the strategy ¢ =(0,v), where

9h=0, WM(L1) = 64(1,—1) =0, V3(~L1) = 0h(~1,—1)):i=—c, (18

where ¢ > 0 is to be determined. Then ¥ is predictable and we have

Va(9)((1,1)) =040 x AST((1,1)) + 0 x AS;((1,1)) =0,
Va(@)((1,-1)) =040 x AST((1,—1)) +0 x AS3((1,—1)) =0,
Va(p)((—1,1)) =0+ 0 x AS}((—1,1)) — ¢ x AS3((—1,1))

1+dQ+2r) 144d
X ((1+r)(1+2r) - 1+r) =—¢x0=0,
Va(9)((—1,-1)) = 040 x AS7((~1, 1)) — ¢ x ASy((—1,~1))
__Cx((1+d)(1+d) _1+d>
(I4+r)(14+2r) 1+
:—cx(1+d d—27“>: 0.99 x 0.03

X CX ————————.
1+r 1+4+2r 1.01 x 1.02

(19)

Choosing c¢ large enough, i.e. ¢ > 1000 X é:géié:gg = 34686.86 gives the desired strategy as
PH{(-1,1)}] =1/2x1/2=0.25.

Such a strategy does not exist. Seeking a contradiction, suppose that there exists a strategy
©=(0,9) such that Va(p) > 1000 P-a.s. Then in particular we have Va(¢)((—1,1)) > 1000.
Since AS3((—1,1)) = 0 (see above), it follows that V;(¢)((—1,1)) > 1000. But given that
d < r < u, the market (§0, §1> is free of arbitrage in the first-period and since Vy(¢) = 0,
we necessarily have V1(¢)((1,1)) = Vi(¢)((1,—1)) < 0. Again since d < r < u, after an
up-movement in the first period the market (§0, S 1) is free of arbitrage in the second period.
Thus we cannot have Vi (¢)((1,1)) = Vi(¢)((1,-1)) < 0 and Va(p)((1,1)) > 1000 > 0 and
Va(p)((1,—-1)) > 1000 > 0. Thus, we arrive at a contradiction.

Please see next page!
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Exercise 14-5. Consider a one-period financial market (SO St SZ) consisting of a bank account
SO with interest rate r := 0.1 and two stocks S', 52. The movements of S and 52 are given by
the following trees, where the numbers beside the branches denote transition probabilities.

(121)

> (110)

S

88

(90)
More precisely, let (2, F,P) be the probability space with Q := {1,0, -1}, F := 2% and the
probability measure IP defined by P[{1}] := 0.5, P[{0}] := 0.3 and IP[{—1}] := 0.2. Next, consider

Yyl and Yy given by

YiH(1) = 1.32, Y1H(0) = 1.1, YiH(—1) := 0.88,
Y2(1) = 1.21, Y2(0) :== 1.1, Y2(—1) := 0.99,

The movements of the bank account S° and the two stocks S and S are then given by
S9:=1, 5):=82:=100, SY:=1.1, S}:=100Y}, S%:=100Y2
Finally, the filtration IF = (Fp, F1) is defined by Fo := {0, Q} and F; := 2% = F.
(a) Show that the market (S°, S, S2) is free of arbitrage and incomplete.

(b) The undiscounted payoff of an exchange option is given by
~ Nt o
OPX = (S} - Sf) ‘= max (0, Sl Sf) .

Compute the set of all arbitrage-free prices for H EX Does there exist an admissible self-
financing strategy ¢ =(3,9) such that Vy(¢) = 22 pas?

(c) Compute an admissible self-financing strategy ¢ =(5,1), which superreplicates HEX ie. sat-
isfies Vi(p) > % P-a.s.

Solution 14-5. (a) By the fundamental theorem of asset pricing in discrete time (Theorem
2.2.1 in the lecture notes), showing that the market is arbitrage-free is equivalent to showing
that there exists an equivalent martingale measure (EMM) @ for the discounted stock prices
S = (S, S?). Note that the movements of the discounted stock price processes S and S?
are given by the following trees, where the numbers beside the branches denote transition
probabilities.
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(170)

> (100)

=

(50)

Observe that S%2 = %Sl +50. Hence S = (S!,5?) is a Q-martingale if and only if S* is
a Q-martingale. Next, any probability measure Q@ equivalent to IP on F; can be described

by a probability vector (q1,qo, ¢—1), where g1 := Q[{1}], g0 := Q[{0}], ¢—1 := Q[{—1}] and
0 < q1,90,9—1 < 1. Then S' and hence S is a Q-martingale if and only if

Eq[Si] = S5,
0<q1,q90,q9-1 < 1. (20)

This is equivalent to

120 x g1 + 100 X go + 80 x ¢_1 = 100,
q1+q+q-1=1,
0< q1,490,49-1 < 1) (21)

which is equivalent to

20 % ¢ — 20g_, = 0,
q1+q +q-1=1,

0< q1,90,9-1 < 17 (22)
which is in turn equivalent to
q1 = 4-1
qo =1 —2q1,
0<4q1,90,9-1 <1 (23)

Thus, the set IP.(.5) of all equivalent martingale measures for S can be described by
P.(S)={(A,1=2X\)) | A€(0,0.5)}. (24)

Since P.(S) is nonempty and consist of more than one element, the market (50, St 52) is
arbitrage-free and incomplete.
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(b) Denote by @ the EMM corresponding to the probability vector (A, 1 —2X, ). Then the set
Pgex of all arbitrage-free prices for H EX ig given by

TEX
Prox = {IEQA [%] (A c (0,0.5)}
—(AX104+(1—20) x0+Ax0|Ae (0,0.5)}

The set Pzpx is an nonempty open interval. In particular, the mapping P.(S) — R,
Q — Eq [IfTE:(} is not constant. By the characterisation of attainable payoffs (Theorem 3.1.2
in the lecture notes) it follows immediately that HEX is not attainable. Hence, there does

not exist an admissible self-financing strategy ¢ =(3,9) with Vi(p) = % P-a.s.

(c) Using that S? = %Sl + 50, we may assume without loss of generality that 92 = 0, i.e. we
only use the bank account and the first stock for hedging. Hence consider a self-financing
strategy ¢ =(5,9), with 9} = ¢ and ¥? = 0, where ¢ € R is to be determined. Then ¢ is a
superreplication strategy for HEX if and only if

L HEXQ)
5+CXASl(1)ZT < 5+CX20210 < 021/4,
T
) ﬁEX(O)
5+CXAS1(O)217—|—7" <~ 5+CXOZO < CER,
N )

Choosing ¢ = 1/4 gives the desired superreplication strategy.

For further information please see
www.math.ethz.ch/education/bachelor/lectures/hs2014/math/mff/ and
www.math.ethz.ch/assistant_groups/gr3/praesenz.
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