
Lineare Algebra

Endliche Arithmetik

Walter Gander

ETH Zürich

2

Contents

Chapter 1. Finite Arithmetic 1

1.1 Introductory Example . 1
1.2 Real Numbers and Machine Numbers 2
1.3 The IEEE Standard . 5

1.3.1 Single Precision . 5
1.3.2 Double Precision 7

1.4 Computations with Machine Numbers 9
1.4.1 Rounding Errors 9
1.4.2 Associative Law 9
1.4.3 Summation Algorithm by W. Kahan 11
1.4.4 Small Numbers . 11
1.4.5 Monotonicity . 11
1.4.6 Avoiding Overflow 12
1.4.7 Test for Overflow 14
1.4.8 Cancellation . 14

1.5 Machine-independent Algorithms 21
1.6 Termination Criteria . 23

1.6.1 Test Successive Approximations 24
1.6.2 Check Residual . 24

1.7 Condition and Stability 25
1.8 Principle of Wilkinson . 25
1.9 The Condition of a System of Linear Equations 26
1.10 Stable and Unstable Algorithms 26

vi CONTENTS

Chapter 1. Finite Arithmetic

1.1 Introductory Example

A very old problem already studied by ancient Greek mathematicians is the squaring
of a circle. The problem consists in transforming a circle into a coextensive square
by using straight edge and compass only. To transform this way a circle in a square
(quadrature of the circle) became a famous unsolved problem for centuries until it
was proved by Galois theory in the 19th century that the problem cannot be solved
using straight edge and compass.

We know today that the circle area is given by A = r2π, where r denotes the
radius of the circle. An approximation is obtained by drawing a regular polygon
inside the circle and by computing the surface of the polygon. The approximation is
improved by increasing the number of corners.

Archimedes managed to produce a 96-sided polygon and by this was able to enclose
π in the interval (31

7 , 310
71). The enclosing interval has length 1/497 = 0.00201207243

— surely good enough for most practical applications.

Fn

2
cos

αn

2

r = 1

sin
αn

2

αn

2

C

BA

Figure 1.1. Squaring of a Circle

To compute such a polygonal approximation of π we consider Figure 1.1. Without
loss of generality we may assume that r = 1. Then the area Fn of the isosceles triangle
ABC with center angle αn is

Fn = cos
αn

2
sin

αn

2

and the area of the associated n-sided polygon becomes

An = nFn =
n

2

(

2 cos
αn

2
sin

αn

2

)

=
n

2
sin αn =

n

2
sin

(
2π

n

)

.

2 FINITE ARITHMETIC

Clearly, computing the approximation An using π would be rather contradictory.
Fortunatly A2n can be derived from An by simple algebraic transformations, i.e. by
expressing sin(αn/2) in terms of sin αn.

This can be achieved by using identities for trigonometric functions:

sin
αn

2
=

√

1 − cos αn

2
=

√

1 −
√

1 − sin2 αn

2
. (1.1)

Thus we have obtained a recursion for sin(αn/2) from sin αn. To start the recursion
we compute the area A6 of the regular hexagon. Each of the six equilateral triangles

has side length 1. The angle α6 = 60◦ and hence sinα6 =
√

3
2 . Therefore, the area

of the triangle is F6 =
√

3/4 and A6 = 3
√

3
2 . We obtain the following program to

compute the sequence of approximations An:

Algorithm 1.1. Computation of π, Naive Version

% computation of pi, naive version

s = sqrt(3)/2; A=3*s; n=6; % initialisation

z = [A-pi n A s]; % store the results

while (s > 1e-10) % termination if s = sin(alpa) small

s= sqrt((1-sqrt(1-s*s))/2); % new sin(alpha/2) value

n=2*n; A= n/2*s; % A = new polygon area

z = [z; A-pi n A s];

end

m = length(z);

for i=1:m

fprintf(’%10d %20.15f %20.15f %20.15f\n’, z(i,2),z(i,3),...

z(i,1),z(i,4))

end

The results, displayed in Table 1.1, are not what we would expect: initially we
observe convergence towards π, for n > 49152, the error grows again and finally
An = 0? Though the theory and the program are correct, we obtain wrong answers.
We will explain in this chapter why this is the case.

1.2 Real Numbers and Machine Numbers

Every computer is a finite automaton. This implies that a computer can only store a
finite set of numbers and perform only a finite number of operations. In mathematics
we are used to carry out our computations with real numbers R covering the continu-
ous interval (−∞,∞). On the computer we deal with a discrete finite set of machine
numbers M = {−ãmin, . . . , ãmax}. Hence each real number a has to be mapped onto
a machine number ã to be used on a computer. In fact a whole interval of real num-
bers is mapped onto one machine number as shown in Figure 1.2. Nowadays machine
numbers are often represented in the binary system. In general any base (or radix) B
could be used to represent numbers. A real machine number or floating point number
consists of two parts, a mantissa (or significand) m and an exponent e

ã = ±m × Be

m = D.D · · ·D mantissa
e = D · · ·D exponent

Real Numbers and Machine Numbers 3

n An An − π sin(αn)

6 2.598076211353316 −0.543516442236477 0.866025403784439
12 3.000000000000000 −0.141592653589794 0.500000000000000
24 3.105828541230250 −0.035764112359543 0.258819045102521
48 3.132628613281237 −0.008964040308556 0.130526192220052
96 3.139350203046872 −0.002242450542921 0.065403129230143

192 3.141031950890530 −0.000560702699263 0.032719082821776
384 3.141452472285344 −0.000140181304449 0.016361731626486
768 3.141557607911622 −0.000035045678171 0.008181139603937

1536 3.141583892148936 −0.000008761440857 0.004090604026236
3072 3.141590463236762 −0.000002190353031 0.002045306291170
6144 3.141592106043048 −0.000000547546745 0.001022653680353

12288 3.141592516588155 −0.000000137001638 0.000511326906997
24576 3.141592618640789 −0.000000034949004 0.000255663461803
49152 3.141592645321216 −0.000000008268577 0.000127831731987
98304 3.141592645321216 −0.000000008268577 0.000063915865994

196608 3.141592645321216 −0.000000008268577 0.000031957932997
393216 3.141592645321216 −0.000000008268577 0.000015978966498
786432 3.141592303811738 −0.000000349778055 0.000007989482381

1572864 3.141592303811738 −0.000000349778055 0.000003994741190
3145728 3.141586839655041 −0.000005813934752 0.000001997367121
6291456 3.141586839655041 −0.000005813934752 0.000000998683561

12582912 3.141674265021758 0.000081611431964 0.000000499355676
25165824 3.141674265021758 0.000081611431964 0.000000249677838
50331648 3.143072740170040 0.001480086580246 0.000000124894489

100663296 3.137475099502783 −0.004117554087010 0.000000062336030
201326592 3.181980515339464 0.040387861749671 0.000000031610136
402653184 3.000000000000000 −0.141592653589793 0.000000014901161
805306368 3.000000000000000 −0.141592653589793 0.000000007450581

1610612736 0.000000000000000 −3.141592653589793 0.000000000000000

Table 1.1. Unstable Computation of π

a ∈ R

ã ∈ M

ãmin 0 ãmax

Figure 1.2.
Mapping of real numbers R onto machine numbers M

4 FINITE ARITHMETIC

where D ∈ {0, 1, . . . , B − 1} stands for one digit. To make the representation of
machine numbers unique (note that e.g. 1.2345×103 = 0.0012345×106), it is required
that for a machine number ã 6= 0 the first digit before the decimal point in the
mantissa be nonzero. Such numbers are called normalized. Characteristic for such
a finite arithmetic is the number of digits used for the mantissa and the exponent.
The number of digits in the exponent defines the range of the machine numbers. The
numbers of digits in the mantissa defines the precision.

More specifically [?], a finite arithmetic is defined by four integer numbers: B,
the base or radix, p, the number of digits in the mantissa, and L and U defining the
exponent range: L ≤ e ≤ U .

The machine precision is described by the real machine number ǫmach. Tradition-
ally, ǫmachis defined to be the smallest ã ∈ M such that ã + 1 6= 1 when the addition
is carried out on the computer. Because this definition involves details about the be-
havior of floating point addition, which are not easily accessible, a newer definition of
ǫmachis simply the spacing of the floating point numbers between 1 and 2. The current
definition only involves how the numbers are represented.

Simple calculators often use the familiar decimal system (B = 10). Typically there
are p = 10 digits for the mantissa and 2 for the exponent (L = −99 and U = 99). In
this finite arithmetic we have

• eps = 0.000000001 = 1.000000000 × 10−9

• the largest machine number

ãmax = 9.999999999 × 10+99

• the smallest machine number

ãmin = −9.999999999 × 10+99

• the smallest (normalized) positive machine number

ã+ = 1.000000000 × 10−99

Early computers e.g. the MARK 1 designed by Howard Aiken and Grace Hopper
in Harvard and finished 1944 or the ERMETH (Elektronische Rechenmaschine der
ETH) constructed by Heinz Rutishauser, Ambros Speiser and Eduard Stiefel, were
also decimal machines. The ERMETH finished 1956 was operational at ETH Zurich
from 1956–1963. The representation of a real number used 16 decimal digits: The
first digit, the q-digit, stored the sum of the digits modulo 3. This was used as a check
if the machine word had been transmitted correctly from memory to the registers.
The next three digits contained the exponent. Then the next 11 digits represented
the mantissa and finally the last digit held the sign. The range of positive machine
numbers was 1.0000000000 × 10−200 ≤ ã ≤ 9.9999999999 × 10199. The possible larger
exponent range was not fully used.

The very first free programmable computer built by the German civil engineer
Konrad Zuse, namely the Z3 presented in 1941 to a group of experts only, however,
was already using the binary system. The Z3 worked with an exponent of 7 bits and

The IEEE Standard 5

a mantissa of 14 bits (actually 15, since the numbers were normalized). The range of
positive machine numbers was the interval

[2−63, 1.11111111111111 × 262] ≈ [1.08 × 10−19, 9.22 × 1018].

In Maple (a computer algebra system) numerical computations are performed
in decimal. The number of digits of the mantissa is defined by the variable Digits

which can be deliberately chosen. The number of digits of the exponent is given by
the word length of the computer – for 32 bits we have a huge maximal exponent of
U = 231 = 2147483648.

1.3 The IEEE Standard

Since 1985 there exists for computer hardware the ANSI/IEEE Standard 754 for
Floating Point Numbers. It has been adopted by almost all computer manufacturers.
The base is B = 2.

1.3.1 Single Precision

The IEEE single precision floating point standard representation uses a 32 bit word
with bits numbered from 0 to 31 from left to right. The first bit S is the sign bit, the
next eight bits E are the exponent bits, e = EEEEEEEE, and the final 23 bits are
the bits F of the mantissa m:

S

e
︷ ︸︸ ︷

EEEEEEEE

m
︷ ︸︸ ︷

FFFFFFFFFFFFFFFFFFFFFFF
0 1 8 9 31

The value ã represented by the 32 bit word is defined as follows:

normal case: If 0 < e < 255 then ã = (−1)S ×2e−127 ×1.m where 1.m is the binary
number created by prefixing m with an implicit leading 1 and a binary point.

exceptions: If e = 255 and m 6= 0, then ã = NaN (Not a number)

If e = 255 and m = 0 and S = 1, then ã = −Inf

If e = 255 and m = 0 and S = 0, then ã = Inf

special cases: If e = 0 and m 6= 0, then ã = (−1)S × 2−126 × 0.m These are
denormalized (or subnormal) numbers.

If e = 0 and m = 0 and S = 1, then ã = −0

If e = 0 and m = 0 and S = 0, then ã = 0

Some examples:

0 10000000 00000000000000000000000 = +1 x 2^(128-127) x 1.0 = 2

0 10000001 10100000000000000000000 = +1 x 2^(129-127) x 1.101 = 6.5

1 10000001 10100000000000000000000 = -1 x 2^(129-127) x 1.101 = -6.5

0 00000000 00000000000000000000000 = 0

1 00000000 00000000000000000000000 = -0

6 FINITE ARITHMETIC

0 11111111 00000000000000000000000 = Inf

1 11111111 00000000000000000000000 = -Inf

0 11111111 00000100000000000000000 = NaN

1 11111111 00100010001001010101010 = NaN

0 00000001 00000000000000000000000 = +1 x 2^(1-127) x 1.0 = 2^(-126)

0 00000000 10000000000000000000000 = +1 x 2^(-126) x 0.1 = 2^(-127)

0 00000000 00000000000000000000001

= +1 x 2^(-126) x 0.00000000000000000000001 = 2^(-149)

= smallest positive denormalized machine number

In Matlab real numbers are usually represented in double precision. The function
single can be used, however, to convert numbers to single precision. Thus we get
with

>> format hex

>> x = single(2)

x =

40000000

>> 2

ans =

4000000000000000

>> s = realmin(’single’)*eps(’single’)

s =

00000001

>> format long

>> s

s =

1.4012985e-45

>> s/2

ans =

0

% Exceptions

>> z = sin(0)/sqrt(0)

Warning: Divide by zero.

z =

NaN

>> y = log(0)

Warning: Log of zero.

y =

-Inf

>> t = cot(0)

Warning: Divide by zero.

> In cot at 13

t =

Inf

We can see that x represents the number 2 in single precision. The functions realmin
and eps with parameter ’single’ compute the machine constants for single precision.
This means that s is the smallest denormalized number in single precision. Dividing
s by 2 we get zero because of underflow. The computation of z yields an undefined
expression which results in NaN even though the limit is defined. The other two
computations for y and t show the exceptions Inf and -Inf.

The IEEE Standard 7

1.3.2 Double Precision

The IEEE double precision floating point standard representation uses a 64 bit word
with bits numbered from 0 to 63 from left to right. The first bit S is the sign bit, the
next eleven bits E are the exponent bits for e and the final 52 bits F represent the
mantissa m:

S

e
︷ ︸︸ ︷

EEEEEEEEEEE

m
︷ ︸︸ ︷

FFFFF · · ·FFFFF
0 1 11 12 63

The value ã represented by the 64 bit word is defined as follows:

normal case: If 0 < e < 2047 then ã = (−1)S × 2e−1023 × 1.m where 1.m is the
binary number created by prefixing m with an implicit leading 1 and a binary
point.

exceptions: If e = 2047 and m 6= 0, then ã = NaN (Not a number)

If e = 2047 and m = 0 and S = 1, then ã = −Inf

If e = 2047 and m = 0 and S = 0, then ã = Inf

special cases: If e = 0 and m 6= 0, then ã = (−1)S × 2−1022 × 0.m These are
denormalized numbers.

If e = 0 and m = 0 and S = 1, then ã = −0

If e = 0 and m = 0 and S = 0, then ã = 0

In Matlab, real computations are performed in IEEE double precision by default. It
is convenient to print real numbers using the hexadecimal format to see the internal
representation, e.g.

>> format hex

>> 2

ans = 4000000000000000

If we expand each hexadecimal digit to 4 binary digits we obtain for the number 2:

0100 0000 0000 0000 0000 0000 0000 0000 0000

We skipped with seven times a group of four zero binary digits. The interpre-
tation is: +1 × 21024−1023 × 1.0 = 2.

>> 6.5

ans = 401a000000000000

This means

0100 0000 0001 1010 0000 0000 0000 0000 0000

Again we skipped with seven times a group of four zeros. The resulting number
is +1 × 21025−1023 × (1 + 1

2 + 1
8) = 6.5

We will concentrate in the following discussion on double precision since this is
today the normal computation mode for real numbers in the IEEE Standard. Fur-
thermore we stick to the IEEE standard as used in Matlab. In other more low level
programming languages, the behavior of the IEEE arithmetic can be adapted, e.g.
the exception handling can be explicitly specified.

• The machine precision is eps= 2−52.

8 FINITE ARITHMETIC

• The largest machine number ãmax is denoted by realmax. Note that

>> realmax

ans = 1.7977e+308

>> log2(ans)

ans = 1024

>> 2^1024

ans = Inf

This looks first like a contradiction since the largest exponent should be accord-
ing the IEEE conventions 22046−1023 = 21023. But realmax is the number with
the largest possible exponent and with the mantissa F consisting of all 1:

>> format hex

>> realmax

ans = 7fefffffffffffff

This is

V = +1 × 22046−1023 × 1. 11 . . . 1
︸ ︷︷ ︸

52Bits

= 21023 ×
(

1 +

(
1

2

)1

+

(
1

2

)2

+ · · · +
(

1

2

)52
)

= 21023 × 1 −
(

1
2

)53

1 −
(

1
2

) = 21023 × (2 − eps)

In spite of log2(realmax)=1024we have realmax 6= 21024 but rather (2−eps)×
21023.

• The computation range is the interval [−realmax, realmax]. If an operation
produces a result outside this interval then it is said to overflow. Before the
IEEE Standard, computation would stop in such a case with an error message.
Now the result of an overflow operation is assigned the number ±Inf.

• The smallest positive normalized number is realmin = 2−1022.

• IEEE allows computations with denormalized numbers. The positive denor-
malized numbers are in the interval [realmin ∗ eps, realmin]. If an operation
produces a positive number which is not zero but also smaller than realmin∗eps
then this result is in the underflow range. Such a result cannot be represented
and zero is assigned instead.

• When computing with denormalized numbers we may suffer a loss of precision.
Consider the following Matlab program

>> format long

>> res = pi*realmin/123456789101112

Computations with Machine Numbers 9

res = 5.681754927174335e-322

>> res2 = res*123456789101112/realmin

res2 = 3.15248510554597

>> pi = 3.14159265358979

The first result res is a denormalized number – it cannot be represented with
full accuracy anymore. So if we reverse the operations and compute res2 we
obtain here a result which has only 2 correct decimal digits. We recommend
therefore to avoid computing with denormalized numbers.

1.4 Computations with Machine Numbers

1.4.1 Rounding Errors

Let ã and b̃ be two machine numbers then c = ã× b̃ will in general not be a machine
number anymore since the product of two numbers consists of the double amount of
digits. The result will therefore be a machine number c̃ which is next to c.

As an example consider the 8 digits decimal numbers

ã = 1.2345678 and b̃ = 1.1111111

Their product is

c = 1.37174198628258 and c̃ = 1.3717420.

The absolute rounding error is the difference ra = c̃ − c = 1.371742e−8 and

r =
ra

c
= 1e−8

is the relative rounding error.
On todays computers the following holds:

a⊕̃b = (a ⊕ b)(1 + r)

where r is the relative rounding error with |r| < ε = machine precision. We denote
with ⊕ ∈ {+,−,×, /} the exact basic operation and with ⊕̃ the equivalent computer
operation.

1.4.2 Associative Law

Consider the associative law

(a + b) + c = a + (b + c).

It does not hold in finite arithmetic. As an example take the three numbers

a = 1.23456e−3, b = 1.00000e0, c = −b.

10 FINITE ARITHMETIC

Then it is easy to see that in decimal arithmetic we obtain (a + b) + c = 1.23000e−3
but a + (b + c) = a = 1.23456e−3.

It is therefore important to use parenthesis wisely and also to consider the order
of the operations.

Assume e.g. that we have to compute a sum
∑N

i=1 ai where the terms ai > 0 are
monotonically decreasing: a1 > a2 > · · · > an. As an example consider the harmonic
series

S =

N∑

i=1

1

i
.

For N = 106 we compute with sufficient accuracy Digits := 20 in Maple an “exact”
reference value:

Digits := 20;

s := 0;

for i from 1 to 1000000 do

s := s+1.0/i:

od:

s;

14.392726722865723804

Using Matlab with IEEE arithmetic we get

N = 1e6

format long e

s1 = 0

for i=1:N

s1 = s1+1/i;

end

s1

ans = 1.439272672286478e+01

We observe that the last three digits are different from the Maple result. If we sum
again with Matlab but in reverse order we obtain

s2 = 0

for i=N:-1:1

s2 = s2+1/i;

end

s2

ans = 1.439272672286575e+01

a much better result! It differs only in the last digit from the Maple result. If we
add a small number to a large one then the lower part of the smaller machine number
is lost. We saw this effect in the example for the associative law. Thus it is better to
start with the smallest elements in a sum and add the largest elements last. It would
pay therefore to first sort the terms of the sum. But this means more computational
work.

Computations with Machine Numbers 11

1.4.3 Summation Algorithm by W. Kahan

An accurate algorithm that does not need to sort the terms was given by W. Kahan.
The idea here is not to discard but keep as carry the lower part of the small term

which is added to the partial sum. The carry is added to the next term.

Algorithm 1.2. Kahan’s Summation of
∑N

j=1

1

j

s = 0;

c = 0;

for j=1:N

y = 1/j + c;

t = s+y;

c = (s-t)+y;

s=t;

end

s = s+c

Doing so we get a remarkably good result which agrees to the last digit with the
Maple result:

s = 1.439272672286572e+01

1.4.4 Small Numbers

If a + x = a holds then we conclude in mathematics that x = 0. This is not true in
finite arithmetic. In IEEE arithmetic e.g. 1 + 1e−20 = 1 holds and this is true not
only for 1e−20 but for all positive machine numbers w with w < eps, where eps is
the machine precision.

1.4.5 Monotonicity

Assume we are given a function f which is strictly monotonically increasing in [a, b].
Then for x1 < x2 with xi ∈ [a, b] we have f(x1) < f(x2). Take as an example
f(x) = sin(x) and 0 < x1 < x2 < π

2 . Can we be sure that in finite arithmetic also
sin(x1) < sin(x2) holds? The general answer is no. Though for standard functions
special care was taken when implementing those in IEEE arithmetic that monotonicity
was maintained so that at least sin(x1) ≤ sin(x2) holds.

As an example let us consider the polynomial

f(x) = x3 − 3.000001x2 + 3x − 0.999999.

This function is almost (x − 1)3, but has 3 simple zeros which are close:

0.998586, 1.00000, 1.001414.

Let us plot the function f :

figure(1)

a = -1; b = 3; h = 0.1;

x = a:h:b; y = x.^3 -3.000001*x.^2 +3*x -0.999999;

12 FINITE ARITHMETIC

plot(x,y)

hold on

legend(’x^3 -3.000001*x^2 +3*x -0.999999’)

plot([a,b],[0,0])

figure(2)

a = 0.998; b = 1.002; h = 0.0001;

x = a:h:b; y = x.^3 -3.000001*x.^2 +3*x -0.999999;

plot(x,y)

hold on

legend(’x^3 -3.000001*x^2 +3*x -0.999999’)

plot([a,b],[0,0])

figure(3)

a = 0.999999993; b = 1.000000007; h = 0.000000000005;

x = a:h:b; y = x.^3 -3.000001*x.^2 +3*x -0.999999;

axis([a b -1e-13 1e-13])

plot(x,y)

hold on

legend(’x^3 -3.000001*x^2 +3*x -0.999999’)

plot([a,b],[0,0])

figure(4) % using Horner’s rule

a = 0.999999993; b = 1.000000007; h = 0.000000000005;

x = a:h:b; y = ((x -3.000001).*x +3).*x -0.999999;

axis([a b -1e-13 1e-13])

plot(x,y)

hold on

legend(’((x -3.000001)*x +3)*x -0.999999’)

plot([a,b],[0,0])

If we zoom in to the zero 1 we see in Figure 1.3 that f behaves like a step function
and we cannot ensure monotonicity. The steps are less pronounced if we use for the
evaluation Horner’s rule.

1.4.6 Avoiding Overflow

To avoid overflow, it is often necessary to modify the way how quantities are com-
puted. Assume e.g. we wish to compute the polar coordinates of a given point (x, y)
in the plane. To compute the radius r > 0 the textbook approach is to use

r =
√

x2 + y2.

However, if |x| or |y| is larger than
√
realmax then x2 or y2 will overflow and produce

the result Inf and hence also r = Inf. Consider as an example x = 1.5e200 and
y = 3.6e195. Then

r2 = 2.25e400 + 12.96e390 = 2.250000001296e400 > realmax,

but r = 1.500000000432e200 would well be in the range of the machine numbers.
There are remedies to compute r without overflow. One possibility is to factor out:

>> x=1.5e200

Computations with Machine Numbers 13

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−8

−6

−4

−2

0

2

4

6

8
x3 −3.000001*x2 +3*x −0.999999

0.998 0.9985 0.999 0.9995 1 1.0005 1.001 1.0015 1.002 1.0025
−5

−4

−3

−2

−1

0

1

2

3

4
x 10

−9

x3 −3.000001*x2 +3*x −0.999999

1 1 1 1 1 1 1 1 1 1
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−14

x3 −3.000001*x2 +3*x −0.999999

1 1 1 1 1 1 1 1 1 1
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−14

((x −3.000001)*x +3)*x −0.999999

Figure 1.3. Monotonicity is lost

x = 1.500000000000000e+200

>> y=3.6e195

y = 3.600000000000000e+195

>> if abs(x)>abs(y),

r = abs(x)*sqrt(1+(y/x)^2)

elseif y==0,

r = 0

else

r = abs(y)*sqrt((x/y)^2+1)

end

r = 1.500000000432000e+200

A simpler program (with more operations) is the following:

m = max(abs(x), abs(y));

if m==0, r=0

else r = m*sqrt((x/m)^2+(y/m)^2)

end

Note that with both solutions we also avoid possible underflow when computing r.

14 FINITE ARITHMETIC

1.4.7 Test for Overflow

Assume we want to compute x2 but we need to know if it overflows. With the IEEE
Standard it is simple to detect this:

if x^2 == Inf

Without IEEE the computation might stop with an error message. A machine inde-
pendent test which will work in almost all cases is

if 1/x/x == 0 % then x^2 will overflow

To avoid the denormalized numbers the test should be

if eps/x/x == 0 % then x^2 will overflow

The latter test is almost always correct. In the IEEE Standard realmin and realmax

are not quite symmetric since the equation

realmax× realmin = c ≈ 4

holds with some constant c which depends on the processor used and/or version of
Matlab.

1.4.8 Cancellation

A special rounding error is called cancellation. If we subtract two almost equal
numbers, leading digits are canceled. Consider the two numbers with 5 decimal
digits:

1.2345e0
−1.2344e0

0.0001e0 = 1.0000e−4

If the two numbers were exact, the result delivered by the computer would also be
exact. But if the first two numbers are already obtained by previous calculations and
affected by rounding errors then the result is in the best case 1.XXXXe−4 and the
digits denoted by X are unknown.

This is exactly what happened in our example at the beginning of this chapter.
To compute sin(α/2) from sin α we used the formula (Equation 1.1):

sin
αn

2
=

√

1 −
√

1 − sin2 αn

2
.

Since sin αn → 0 the nominator on the right hand side is

1 −
√

1 − ε2, with small ε = sin αn

and is subjected to severe cancellation. This is the reason why the algorithm per-
formed so badly though theory and program are correct.

It is possible in this case to rearrange the computation and avoid cancellation:

sin
αn

2
=

√

1 −
√

1 − sin2 αn

2
=

√
√
√
√1 −

√

1 − sin2 αn

2

1 +
√

1 − sin2 αn

1 +
√

1 − sin2 αn

Computations with Machine Numbers 15

=

√

1 − (1 − sin2 αn)

2(1 +
√

1 − sin2 αn)
=

sin αn
√

2(1 +
√

1 − sin2 αn)

The last expression does not suffer anymore from cancellation. The new program
becomes:

Algorithm 1.3. Coputation of π, Stable Version

% computation of pi, stabilized version

oldA = 0;

s = sqrt(3)/2; newA=3*s; n=6; % initialization

z = [newA-pi n newA s]; % store the results

while (newA>oldA) % iterate as long as new surface

% is larger than old one

oldA=newA;

s= s/sqrt(2*(1+sqrt((1+s)*(1-s)))); % new sin-value

n=2*n; newA= n/2*s;

z = [z; newA-pi n newA s];

end

m = length(z);

for i=1:m

fprintf(’%10d %20.15f %20.15f\n’, z(i,2),z(i,3), z(i,1))

end

This time we do converge to the correct value of π (see Table 1.2). Notice also
the elegant termination criterion: since theoretically the surface of the next polygon
grows we have

A6 < · · · < An < A2n < π.

However, in finite arithmetic this cannot be true forever since there is only a finite
set of machine numbers. Thus the situation must occur that A2n ≤ An and this is
the condition to stop the iteration.

Consider as a second example for cancellation the computation of the exponential
function using the Taylor series:

ex =
∞∑

j=0

xj

j!
= 1 + x +

x2

2
+

x3

6
+

x4

24
+ . . .

It is well known that the series converges for any x. A naive approach is therefore:

Algorithm 1.4. Computation of ex, Naive Version

function y = e(x, tol);

%

sn = 1; term = 1; k=1;

while abs(term)>tol*abs(sn)

s = sn; term = term*x/k;

sn = s + term; k=k+1;

end

y = sn;

16 FINITE ARITHMETIC

n An An − π

6 2.598076211353316 −0.543516442236477
12 3.000000000000000 −0.141592653589793
24 3.105828541230249 −0.035764112359544
48 3.132628613281238 −0.008964040308555
96 3.139350203046867 −0.002242450542926

192 3.141031950890509 −0.000560702699284
384 3.141452472285462 −0.000140181304332
768 3.141557607911857 −0.000035045677936

1536 3.141583892148318 −0.000008761441475
3072 3.141590463228050 −0.000002190361744
6144 3.141592105999271 −0.000000547590522

12288 3.141592516692156 −0.000000136897637
24576 3.141592619365383 −0.000000034224410
49152 3.141592645033690 −0.000000008556103
98304 3.141592651450766 −0.000000002139027

196608 3.141592653055036 −0.000000000534757
393216 3.141592653456104 −0.000000000133690
786432 3.141592653556371 −0.000000000033422

1572864 3.141592653581438 −0.000000000008355
3145728 3.141592653587705 −0.000000000002089
6291456 3.141592653589271 −0.000000000000522

12582912 3.141592653589663 −0.000000000000130
25165824 3.141592653589761 −0.000000000000032
50331648 3.141592653589786 −0.000000000000008

100663296 3.141592653589791 −0.000000000000002
201326592 3.141592653589794 0.000000000000000
402653184 3.141592653589794 0.000000000000001
805306368 3.141592653589794 0.000000000000001

Table 1.2. Stable Computation of π

Computations with Machine Numbers 17

For small |x| this program works quite well:

>> e(1,1e-8)

ans = 2.718281826198493e+00

>> exp(1)

ans = 2.718281828459045e+00

>> e(-1,1e-8)

ans = 3.678794413212817e-01

>> exp(-1)

ans = 3.678794411714423e-01

But for x = −20 and x = −50 we obtain

>> e(-20,1e-8)

ans = 5.621884467407823e-09

>> exp(-20)

ans = 2.061153622438558e-09

>> e(-50,1e-8)

ans = 1.107293340015503e+04

>> exp(-50)

ans = 1.928749847963918e-22

completely wrong results. The reason is that e.g. for x = −20 the terms of the series

1 − 20

1!
+

202

2!
− · · · + 2020

20!
− 2021

21!
+ · · ·

become large and have oscillating signs. The largest terms are

2019

19!
=

2020

20!
= 4.3e7.

The partial sums should converge to e−20 = 2.06e−9. But because of the growth of
the terms the partial sums become large as well and oscillate as shown in Figure 1.4.
Table 1.3 shows that the largest partial sum has about the same size as the largest
term. Since the large partial sums have to be diminished by additions/subtractions
of terms this cannot happen without cancellation. It also does not help to sum up
first all positive and negative parts separately because finally when the two sums are
subtracted we suffer again from catastrophic cancellation. Since the result

e−20 ≈ 10−17 2020

20!

is about 17 decimal digits smaller than the largest intermediate partial sum and the
IEEE Standard has only about 16 decimal digits accuracy we cannot expect to obtain
one correct digit anymore.

A third example for cancellation is the recursive computation of the mean and the
standard deviation of a sequence of numbers. Given the real numbers x1, x2, . . . , xn

the mean is

µn =
1

n

n∑

i=1

xi. (1.2)

18 FINITE ARITHMETIC

0 2 4 6 8 10 12 14 16 18 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

7

number of terms summed

pa
rt

ia
l s

um

Figure 1.4. Partial sum of the Taylor expansion of e−20

number of partial sum
terms summed

20 −2.182259377927747e + 07
40 −9.033771892137873e + 03
60 −1.042344520180466e − 04
80 6.138258384586164e − 09

100 6.138259738609464e − 09
120 6.138259738609464e − 09

exact value 2.061153622438558e-09
Table 1.3. Numerically Computed Partial Sums of e−20

Computations with Machine Numbers 19

One definition of the variance is

var(x) =
1

n

n∑

i=1

(xi − µn)2. (1.3)

The square-root of the variance is the standard deviation

σn =
√

var(x). (1.4)

To compute the variance using Equation (1.3) requires two runs through the data xi.
By the following algebraic manipulation of the formula for the variance we obtain a
new expression which allows us to compute both quantities in only one run through
the data. By expanding the square bracket we obtain from Equation (1.3)

var(x) =
1

n

n∑

i=1

(x2
i − 2µnxi + µ2

n) =
1

n

n∑

i=1

x2
i − 2µn

1

n

n∑

i=1

xi + µ2
n

1

n

n∑

i=1

1,

which simplifies to

σ2
n =

1

n

n∑

i=1

x2
i − µ2

n. (1.5)

This relation leads to the classical recursive computation of mean, variance and stan-
dard deviation. In the following test we use the values

x = 100*ones(100,1) + 1e-5*(rand(100,1)-0.5)

and compare the results with the (two run) Matlab-functions mean, var and std:

Algorithm 1.5.
Mean, Standard Deviation – Classical Unstable Computation

x = 100*ones(100,1) + 1e-5*(rand(100,1)-0.5);

format long

s = 0;

sq = 0;

n = 0;

done = 0;

while n<length(x),

n = n+1;

s = s+x(n);

sq = sq + x(n)^2;

mue = s/n;

sigma2 = sq/n -mue^2;

sigma = sqrt(sigma2);

end

means = [mue mean(x)]

variances = [sigma2 var(x,1)]

sigma = sqrt(sigma2);

standarddev = [sigma, std(x,1)]

20 FINITE ARITHMETIC

Each execution of these statements will be different since we use the function rand

to generate the xi. However, we typically get results like

means =

1.0e+02 *

1.00000000308131 1.00000000308131

variances =

1.0e-11 *

0.90949470177293 0.81380653750974

standarddev =

1.0e-05 *

0.30157829858478 0.28527294605513

which show that the classical formulas are numerically unstable. It may even occur
that the standard deviation becomes complex because the variance becomes negative!
Of course this is a numerical effect due to severe cancellation which can occur when
using Equation (1.5).

A better update formula which avoids cancellation can be derived as follows:

(n + 1)σ2
n+1 =

n+1∑

i=1

(xi − µn+1)
2

=
n∑

i=1

(xi − µn+1)
2 + (xn+1 − µn+1)

2

=
n∑

i=1

((xi − µn) − (µn+1 − µn))2 + (xn+1 − µn+1)
2

=

n∑

i=1

(xi − µn)2 − 2(µn+1 − µn)

n∑

i=1

(xi − µn)

+n(µn+1 − µn)2 + (xn+1 − µn+1)
2

= nσ2
n + 0 + n(µn+1 − µn)2 + (xn+1 − µn+1)

2.

For the mean we have the relation

(n + 1)µn+1 = nµn + xn+1

thus

µn =
n + 1

n
µn+1 −

1

n
xn+1

and therefore

n (µn+1 − µn)2 = n

(

µn+1 −
n + 1

n
µn+1 +

1

n
xn+1

)2

=
1

n
(xn+1 − µn+1)

2 .

Using this in the recursion for σ2
n+1 we obtain

(n + 1)σ2
n+1 = nσ2

n +
n + 1

n
(xn+1 − µn+1)

2

Machine-independent Algorithms 21

and finally (we set n := n − 1):

σ2
n =

n − 1

n
σ2

n−1 +
1

n − 1
(xn − µn)2 . (1.6)

This time we obtain with the same xi values as above

Algorithm 1.6.
Mean, Standard Deviation – Stable Computation

x = 100*ones(100,1) + 1e-5*(rand(100,1)-0.5);

s = x(1);

mue = s;

sigma2 = 0;

n = 1;

done = 0;

while n<length(x),

n= n+1;

s = s+x(n);

mue = s/n;

sigma2 = (n-1)*sigma2/n +(x(n) -mue)^2/(n-1);

sigma = sqrt(sigma2);

end

means = [mue mean(x)]

variances = [sigma2 var(x,1)]

sigma = sqrt(sigma2);

standarddev = [sigma, std(x,1)]

the much better results:

means =

1.0e+02 *

1.00000000308131 1.00000000308131

variances =

1.0e-11 *

0.81380653819342 0.81380653750974

standarddev =

1.0e-05 *

0.28527294617496 0.28527294605513

1.5 Machine-independent Algorithms

When designing algorithms for finite arithmetic we need to make use of the properties
discussed in the previous sections. Such algorithms work thanks to the rounding errors
and thanks to the finite set of machine numbers.

Consider as an example again the computation of the exponential function using
the Taylor series. We saw that for x > 0 we get good results. Using the Stirling
Formula n! ∼

√
2π
(

n
e

)n
we see that for a given x the n-th term

tn =
xn

n!
∼ 1√

2π

(xe

n

)n

→ 0, n → ∞.

22 FINITE ARITHMETIC

The largest term is for n ≈ |x|. After that the terms decrease and converge to zero.
Also numerically the term tn becomes so small that in finite arithmetic

sn + tn = sn, with sn =

n∑

i=0

xi

i!

holds. This is an elegant termination criterion which does not depend on the details
of the floating point arithmetic but makes use of the finite numbers of digits in the
mantissa. This way the algorithm is machine independent; it would not work in exact
arithmetic, however, since it would never terminate.

To avoid the cancellation we make use of the property of the exponential function
ex = 1/e−x. For x < 0 we compute first e|x| and then ex = 1/e|x|. We thus get a
stable version to compute the exponential function:

Algorithm 1.7. Stable Computation of ex

function y = e2(x);

% E2 stable computation of the exponential

% function using the series.

if x<0, v=-1; x= abs(x); else v=1; end

s = 0; sn = 1; term = 1; k=0;

while s ~= sn

s = sn; k=k+1; term = term*x/k;

sn = s + term;

end

if v<0, y = 1/sn; else y = sn; end

Now we obtain very good results for all x:

>> e2(-20)

ans = 2.061153622438558e-09

>> exp(-20)

ans = 2.061153622438558e-09

>> e2(-50)

ans = 1.928749847963917e-22

>> exp(-50)

ans = 1.928749847963918e-22

Note that we have to compute the terms recursively

tk = tk−1
x

k
and not explicitly tk =

xk

k!

in order to avoid possible overflows in the nominator or denominator.

As a second example consider the problem of designing an algorithm to compute
the square root. Given a > 0 we wish to compute

x =
√

a ⇐⇒ f(x) = x2 − a = 0.

Termination Criteria 23

Applying Newton’s iteration we obtain

x − f(x)

f ′(x)
= x − x2 − a

2x
=

1

2
(x +

a

x
)

and the quadratically convergent iteration (often also called Heron’s formula)

xk+1 = (xk + a/xk)/2. (1.7)

When should we terminate the iteration? We could of course test if successive it-
erations match to some relative tolerance. But here we can develop a much nicer
termination criterion. The geometric interpretation of Newton’s method shows us
that if

√
a < xk then

√
a < xk+1 < xk. Thus if we start the iteration with

√
a < x0

then the sequence {xk} is monotonically decreasing to s =
√

a. This monotonicity
cannot hold forever on a machine with finite arithmetic. So when it is lost we have
reached machine precision.

We must make sure that
√

a < x0. But this is easily achieved because it is again
geometrically clear that after the first iteration starting with any positive number
the next iterate is larger than

√
a. If we start with x0 = 1, the next iterate is

(1 + a)/2 ≥ √
a. Thus we obtain Algorithm 1.8.

Algorithm 1.8. Computing
√

x machine independently

function y = squareroot(a);

% SQUAREROOT computes y = sqrt(a) using Newton’s method

xo = (1+a)/2; xn = (xo+a/xo)/2;

while xn<xo

xo = xn; xn = (xo+a/xo)/2;

end

y=(xo+xn)/2;

Notice that Algorithm 1.8 is elegant, there is no “epsilonic” for a termination
criterion. It computes the square root on any computer without knowing the machine
precision by making use of the fact that there is always only a finite set of machine
numbers. Finally it is an algorithm that would not work on a machine with exact
arithmetic — it does make use of finite arithmetic. Often these are the best algorithms
one can design.

Another example of a fool-proof and machine-independent algorithm is given in
Chapter ??. The bisection algorithm to find a simple zero makes use of the fact that
there is only a finite number of machine numbers. Bisection is continued as long as
there is a machine number in the interval (a, b). When the interval consists only of
the endpoints then the iteration is terminated in a machine-independent way. See
Algorithm ?? for details.

1.6 Termination Criteria

We have used in the last section termination criteria which were very specific to the
problem and which made use of the finite arithmetic. What to do in a general case?

24 FINITE ARITHMETIC

1.6.1 Test Successive Approximations

If we have a sequence xk converging to some limit s which we are interested in,
a commonly used termination criterion is to check the difference of two successive
approximations

|xk+1 − xk| < tol absolute or |xk+1 − xk| < tol|xk+1| relative “error”.

The test involves the absolute (or relative) difference of two successive iterates
(often referred to somewhat sloppy as absolute or relative error) and of course it is
questionable if also the corresponding errors |xk+1 − s| and |xk+1 − s|/|s| are small.
This is certainly not the case if convergence is very slow (see Chapter ?? , Equation
(??)). We can be far away from the solution s and make very small steps toward it.
In that case the above termination criterion will terminate the iteration prematurely.

Consider as an example the equation xe10x = 0.001. A fixed point iteration is
obtained by adding x an both sides and dividing by1 + e10x:

xk+1 =
0.001 + xk

1 + e10xk

.

If we start the iteration with x0 = −10 we obtain the iterates

x1 = −9.9990, x2 = −9.9980, x3 = −9.9970.

It would be wrong to conclude that we are close to the solution s ≈ −9.99 since the
only solution of this equation is s = 0.0009901473844.

1.6.2 Check Residual

Another possibility to check if an approximation is good enough is to check how well
it fulfills the property of the object it should approximate. In case of the square root
above one might want to check if r = |x2

k − a| is small. In case of a system of linear
equations Ax = b one checks how small the residual

r = b − Axk

becomes for an approximative solution xk.
Unfortunately a small residual does not guarantee that we are close to a solution!

Take as an example for this the following linear system of equations:

Ax = b, A =

(
0.4343 0.4340
0.4340 0.4337

)

b =

(
1

0

)

.

The exact solution is

x =
1

9

(−43370000

43400000

)

=

(−4.81888 . . .

4.82222 . . .

)

106.

The entries of the matrix A are decimal numbers with 4-digits. The best 4-digits
decimal approximation to the exact solution is

x4 =

(−4819000

4822000

)

.

Condition and Stability 25

Now if we compute the residual of that approximation we obtain:

r4 = b − Ax4 =

(
144.7

144.6

)

rather a large residual! We can easily guess “better” solutions. If e.g. we propose

x1 =

(−1

1

)

⇒ r1 = b − Ax1 =

(
1.0003

0.0003

)

the residual is much smaller. And the residual of x = (0, 0)T is r = b = (1, 0)T , even
smaller! Thus we better not trust small residuals to always imply that we are close to
a solution.

1.7 Condition and Stability

A few words have to be said about condition and stability though those notions are
not part of finite arithmetic. However, they have an important influence in connection
with numerical computations.

A problem can be well- or ill-conditioned. Well-conditioned means that the so-
lution of a slightly perturbed problem (this is a problem with slightly changed initial
data) does not differ much from the solution of the original problem. Ill-conditioned
problems are problems where the solution is very sensitive with respect to small
changes in the initial data.

A related notion is well- or ill-posed problem. Let A : X → Y be a mapping of
some space X to Y . The problem Ax = y is well-posed if

1. For each y ∈ Y there exists a solution x ∈ X.

2. The solution x is unique.

3. The solution x is a continuous function of the the data.

If one of the conditions is not met then the problem is said to be ill-posed. Especially
if condition 3 is violated then the problem is ill-conditioned. But we speak also of
an ill-conditioned problem if the problem is well-posed but if the solution is very
sensitive with respect to small changes in the date.

A good example of an ill-conditioned problem is the Wilkinson-polynomial dis-
cussed in Chapter ??.

1.8 Principle of Wilkinson

Operations on the computer are subjected to rounding errors. Thus for instance for
the multiplication of two numbers

a×̃b = a × b(1 + r) = a × (b + b × r).

This means

The result of a numerical computation on the computer is the exact result
with slightly perturbed initial data.

26 FINITE ARITHMETIC

The numerical result of the multiplication a×̃b is the exact result a× b̃ with a slightly
changed operand b̃ = b + b × r.

The study of the condition of a problem is therefore very important since we will
always obtain a solution of a perturbed problem when performing computations with
real numbers on a computer.

1.9 The Condition of a System of Linear Equations

Consider the linear system of equations

Ax = b, with A ∈ R
n×n nonsingular.

A perturbed system is (A + E)y = b. The difference of both equations gives

A(x − y) − Ey = 0 ⇐⇒ x − y = A−1Ey

Taking norms we get

‖x − y‖ = ‖A−1Ey‖ ≤ ‖A−1‖‖E‖‖y‖

Thus if the perturbation is small ‖E‖ = ε‖A‖ compared to the norm of A then

‖x − y‖
‖y‖ ≤ ‖A−1‖‖E‖ = ε ‖A−1‖‖A‖

︸ ︷︷ ︸

κ(A)

where κ(A) = ‖A−1‖‖A‖ denotes the condition number. If we use the 2-norm as
matrix norm (see Chapter ??) then

||A|| := max
x6=0

||Ax||2
||x||2

= σmax(A),

and the condition number is computed by

κ =
σmax(A)

σmin(A)
= cond(A) in Matlab.

Thus according to the principle of Wilkinson we have to expect that the numerical
solution may deviate by about κ units in the last digit from the exact solution.

1.10 Stable and Unstable Algorithms

If executed in finite arithmetic an algorithm is called stable if the effect of rounding
errors is bounded. If an algorithm increases the condition number of a problem then
we also classify it as unstable.

Example 1.1. Consider the linear system

Ax = b, A =

(
10−7 1

1 1

)

b =

(
1

2

)

.

If we interpret the equations as lines in the plane then their graphs show a clear
cutting point near x = (1, 1)T . The angle between the two lines is about 45◦ degrees.

Stable and Unstable Algorithms 27

If we want to solve the system algebraically then we might eliminate the first
unknown in the second equation by replacing the second equation with the linear com-
bination

<second equation> − 1

10−7
<first equation>.

Thus we get the new system

10−7x1 + x2 = 1
(1 − 107) x2 = 2 − 107

If we again interpret the two equations as lines in the plane then this time we see
that the two lines are almost parallel and coincident. The cutting point is not easy to
draw – the problem has become very ill-conditioned.

What went wrong? We eliminated the unknown using the pivot in the diagonal
which is very small. We transformed a well-conditioned problem in this way into an
ill-conditioned one. Choosing small pivots makes Gaussian elimination unstable – we
need to apply a pivot strategy to get a numerically satisfactory algorithm (cf. Section
??).

Note, however, that if we solve linear equations using orthogonal transformations
(Givensrotations, or Householder-reflections) then the condition number of the trans-
formed matrices remains constant. This is easy to see. If QT Q = I and

Ax = b ⇒ QAx = Qb

then κ(QA) = ‖(QA)−1‖‖QA‖ = ‖A−1QT‖‖QA‖ = ‖A−1‖‖A‖ since the norm is
invariant under multiplication with orthogonal matrices.

Example 1.2. As a second example we consider the computation of the values

cos(1), cos(
1

2
), cos(

1

4
), . . . cos(2−12).

We consider three algorithms

1. straightforward:

zk = cos(2−k), k = 0, 1, . . . , 12.

This is no doubt stable but maybe not efficient.

2. double angle: we use the relation cos 2α = 2cos2 α − 1 to compute

y12 = cos(2−12), yk−1 = 2y2
k − 1, k = 12, 11, . . . , 1.

3. half angle: we use cos α
2 =

√
1+cos α

2 and compute

x0 = cos(1), xk+1 =

√

1 + xk

2
, k = 0, 1, . . . , 11.

The results are given in Table 1.4. We notice that the yk computed by Algorithm 2
are affected by rounding errors while the computations of the xk with Algorithm 3
seems to be stable. Let us analyse the numerical computations of yk. Assume that yi

28 FINITE ARITHMETIC

2−k yk − zk xk − zk

1 -0.0000000005209282 0.0000000000000000
5.000000e-01 -0.0000000001483986 0.0000000000000000
2.500000e-01 -0.0000000000382899 0.0000000000000001
1.250000e-01 -0.0000000000096477 0.0000000000000001
6.250000e-02 -0.0000000000024166 0.0000000000000000
3.125000e-02 -0.0000000000006045 0.0000000000000000
1.562500e-02 -0.0000000000001511 0.0000000000000001
7.812500e-03 -0.0000000000000377 0.0000000000000001
3.906250e-03 -0.0000000000000094 0.0000000000000001
1.953125e-03 -0.0000000000000023 0.0000000000000001
9.765625e-04 -0.0000000000000006 0.0000000000000001
4.882812e-04 -0.0000000000000001 0.0000000000000001
2.441406e-04 0.0000000000000000 0.0000000000000001

Table 1.4. Stable and unstable recursions

denotes the exact value and ỹi the numerically computed value. The rounding error
is the difference εi = yi − ỹi. Now

yi−1 = 2y2
i − 1 = 2(ỹi + εi)

2 − 1

= 2ỹ2
i + 4ỹiεi + 2ε2

i − 1

= 2ỹ2
i − 1

︸ ︷︷ ︸

ỹi−1

+ 4ỹiεi + 2ε2
i

︸ ︷︷ ︸

εi−1

Thus as first order approximation we get

εi−1 ≈ 4ỹiεi

and therefore
ε0 ≈ 4i ỹ1ỹ2 · · · ỹi

︸ ︷︷ ︸

≈1

εi ≈ 4iεi.

For i = 12 and the machine precision eps = 2.2204e−16 we obtain 412eps = 3.7e−9
which is a good estimate of the error 5e−10 of y0.

