Learning MATLAB by doing MATLAB*

September 23, 2010

Download MATLAB from http://stud-ides.ethz.ch

1. Variables, Vectors, Matrices

$>a=7$
$>b=[1,2,3]$
$>c=[1+2,3,3]$
$>d=\left[\begin{array}{lll}7 & 7 & 2\end{array}\right]$
$>\mathrm{e}=\left[\begin{array}{lll}7 & \text { a }\end{array}\right]$
$>f=[1 ; 2 ; 3 ; 4]$
$>\mathrm{g}=\mathrm{f}(2)$
$>E=\left[\begin{array}{llll}1 & 2 & 3 ; 2 & 1\end{array}\right]$
$>h=E(1,2)$
$>E$
$>F(3,4)=7$
$>F(4,3)=2$
$>F(1,2)=3$
$>F(1: 2,3: 4)=\left[\begin{array}{lll}1 & 3 ; 2 & 7\end{array}\right]$
$>F(2: 4,:)$
$>$ whos
>clear a b
>whos
>clear
>help clear
$>A=\left[\begin{array}{ll}1 & 2\end{array}\right]$;
$>A$
$>p i$
$>A=$ eye (3)
$>b=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$
$>B=\operatorname{diag}(b)$
$>C=\operatorname{diag}\left(\left[\begin{array}{lll}1 & 7 & 8\end{array}\right]\right)$
$>D=\operatorname{diag}([1 ; 7 ; 8])$
$>E=o n e s(4)$
$>G=$ ones $(2,3)$
$>H=$ zeros (4)
$>$ I=zeros $(2,3)$
$>J=[A B ; z e r o s(3) A]$
$>F$
$>$ F
$>\mathrm{w}(3)=5$
$>x=0: 1 / 3: 2$
$>$ for $i=1: 10$
$y(i)=2 * i$
end
$>$ for $i=1: 10$
$z(i)=2 * i ; \quad$ the ${ }^{\prime} ;$ ' stops MATLAB from displaying the results
a is interpreted as a scalar (or 1×1 matrix) after comma: new element in the same row, therefore we have $b \in \mathbb{R}^{1,3}$
spaces have the same meaning as commas
semicolon: starts a new row, therefore we have $f \in \mathbb{R}^{4,1}$ accesses the second element of the column vector f MATLAB distinguishes between lower and upper cases accesses the $(1,2)$ element of E

MATLAB currently considers F to be a 3×4-Matrix.
Void elements are set to zero.
Now we need a fourth row!
Sets the $(1,2)$ element of F to 3 .
$1: 2$ means row 1 to row $2 ; 3: 4$ means column 3 to column 4
statistics of used variables
deletes variables a and b
deletes all variables
help for the command clear
concluding the line with a semicolon suppresses the output
3×3 identity matrix
diagonal matrix
also works with column vectors
4×4 matrix of all ones
2×3 matrix of all ones
block matrix
transpose of C
MATLAB considers w to be a row vector. The third element of w is set to 5 . row vector with entries from 0 to 2 in steps of $1 / 3$
i runs from 1 to 10 . (MATLAB waits for the final end kommt!)
the index $i=0$ is not possible here, since vectors have no 0th element!

[^0]
2. Simple Operations

```
>clear
>clc
>A=[\begin{array}{lllll}{1}&{2}&{3;2}&{1}&{0}\end{array}]
>B=[[2 2;1 0;0 1]
>C=[[0 1 0;5 1 3}
>size(A)
> [m,n]=size(A)
>m=size(A,1)
>A*B
>A*C
>A
>C
>A*C' A.C'T
>diag(A*C') returns the diagonal of a matrix
>whos
>D=A+C
= =A+B error, dimensions do not fit!
>E=A-B,
E=A-B
>b=[\begin{array}{lll}{2}&{1}&{3}\end{array}]
>x=[2;1;3]
>g=A*x matrix times vector
>g=A*b error!
>A
>b
>B
>f=b*B row vector times matrix
>C=[llll
Returns number of rows and columns of \(A\) in a row vector.
One way to access these numbers individually.
Another way.
matrix multiplications
error, dimensions do not fit!
\(>A\)
\(>C\)
\(>\mathrm{A} * \mathrm{C}, \quad A \cdot C^{T}\)
\(>\operatorname{diag}\left(A * C^{\prime}\right) \quad\) returns the diagonal of a matrix
>whos
ans (for "answer") is the unnamed output
matrix addition
error, dimensions do not fit!
\(E=A-B^{T}\)
matrix times vector
error!
row vector times matrix
\(>C=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\),
```

Test yourself: Try to predict what MATLAB will return (without looking at the explanations)

```
```

>clear; clc

```
```

>clear; clc
>A=[1 2;3 4]
>A=[1 2;3 4]
A (3,2)=7 Adds a third row!
A (3,2)=7 Adds a third row!
>A(1:2,2) (1:2,2):1st to 2nd element of column 2
>A(1:2,2) (1:2,2):1st to 2nd element of column 2
>A(3,1:2) (3,1:2): 1st to 2nd element of row 3
>A(3,1:2) (3,1:2): 1st to 2nd element of row 3
>B (3:4,3)=[5;6] MATLAB creates a matrix B with the 3rd and 4th elements
>B (3:4,3)=[5;6] MATLAB creates a matrix B with the 3rd and 4th elements
of column 3 being 5 and 6, respectively. All other entries are zero.
of column 3 being 5 and 6, respectively. All other entries are zero.
>C (4:5,4)=A(1:2,2)
>C (4:5,4)=A(1:2,2)
>B(:,3) 3rd column of B
>B(:,3) 3rd column of B
>d=C(1,:) 1st row of C
>d=C(1,:) 1st row of C
>E=[11 2 3;4 5 6;7 8 9;10 11 12]
>E=[11 2 3;4 5 6;7 8 9;10 11 12]
>E(1:2:4,3) (1:2:4,3): Picks every second element in column 3 from 1 to 4.
>E(1:2:4,3) (1:2:4,3): Picks every second element in column 3 from 1 to 4.
>F=[1 2 3 3 4 5;6 7 8 9 10;11 12 13 14 15]
>F=[1 2 3 3 4 5;6 7 8 9 10;11 12 13 14 15]
>G=F(1:2:3,1:2:5) Picks every second element in columns 1,3,5 from 1 to 3.
>G=F(1:2:3,1:2:5) Picks every second element in columns 1,3,5 from 1 to 3.
>b=[l99 100 101}
>b=[l99 100 101}
>F}(1,1:3)=
>F}(1,1:3)=
>A
>A
>A}(1,1:3)=\textrm{b}\quad\mathrm{ Elements (2,3) and (3,3) are added.

```
```

>A}(1,1:3)=\textrm{b}\quad\mathrm{ Elements (2,3) and (3,3) are added.

```
```


3. Matrix Manipulations

$>G=F(1: 2:$ end $, 1: 2:$ end $) \quad$ Alternative notation if you forgot the dimensions.
$>H=\left[\begin{array}{ll}1 & 3 ; 9 \\ 11\end{array}\right]$
$>\mathrm{H}^{\wedge}(-1)$
$>\operatorname{inv}(\mathrm{H})$
$>H \backslash A(1: 2,1: 2)$
$>\operatorname{det}(H)$

The inverse.
Also the inverse.
Always use the backslash for computing $H^{-1} A$. Don't use inv(H) $*$ A! The determinant.

4. Subprograms, m Files

For the following subprograms you have to create files with the name of the function appended by ".m", for example "test1.m". (You may use any editor to do this, MATLAB comes with a built-in editor which also offers debugging.) The m files have to be in the current working directory. Try help pwd and help cd for more infos about working directories.

```
% This is my first m file. % You can add comments behind %.
% It is called test1.m and computes the sum of all elements of a matrix }A\mathrm{ .
function y=test1(A)
[m,n]=size(A);
y=0; % Init
for i=1:m % i runs from 1 to m
    for j=1:n % j runs from 1 to n
        y=y+A(i,j);
    end
end }\quad\mathrm{ Save under test1.m. 
```

```
>clear
>help test1
>A=[l1 2;3 4]
>s=test1 (A)
```

\% The program test2.m computes the sum and the product of all elements of a matrix A,
$\%$ as well as the trace if the matrix is square.
function $[y, p, t]=t e s t 2(A)$
$[\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{A})$;
$y=0$;
$\mathrm{p}=1$;
$\mathrm{t}=0$;
for $i=1: m$
if $(\mathrm{m}==\mathrm{n}) \quad \%$ if $m=n$, then \ldots
$t=t+A(i, i) ;$
end
for $\mathrm{j}=1$: n
$y=y+A(i, j)$;
$p=p * A(i, j)$;
end
end
Save under test2.m.
>clear, help test2
$>A=\left[\begin{array}{ll}1 & 2 ; 3\end{array}\right]$
>test2(A)
>[su, pr, sp]=test2(A);
$>\mathrm{su}, \mathrm{pr}, \mathrm{sp}$
$>B=\left[\begin{array}{lllll}1 & 2 & 3 ; 4 & 5 & 6\end{array}\right]$
$>[$ su $, \mathrm{pr}, \mathrm{sp}]=$ test2 2 ($)$

MATLAB functions can have several input variables (e.g., function ausgabe=test3(A,B,C)) or require no input/output at all (e.g., function []=test4() or you just omit the whole function declaration, call with test4). Besides the 'for' loop, there is also a 'while' loop. See help while.

5. Graphics

>clear; clc
$>f$ or $i=1: 10, x(i)=i / 10 ; y(i)=x(i) \wedge 2 ; z(i)=s q r t(x(i))$; end
$>p l o t(x, y)$
$>p l o t(x, z)$
>clf
$>\operatorname{plot}(\mathrm{x}, \mathrm{y})$
$>$ hold on
$>\operatorname{plot}(x, z)$
>plot($x, 2 * z, ' r ')$
>plot($x, y+z, '{ }^{\prime} *$ ')
$>h o l d$ off
>plot ($\mathrm{x}, \mathrm{y}-\mathrm{z}, \mathrm{h}+\mathrm{k}$ ')
>help plot
>title('My plot')
>xlabel('x axis')
>ylabel('y axis')
>axis([0,1,-1, 0.5])
$>$ box
>grid
>figure
>subplot $(3,2,1) \quad$ The plot has $3 \cdot 2=6$ subplots. The 1 st subplot is active.
$>p l o t(x, y)$
$>$ subplot $(3,2,2)$
>plot($x, z, ' k$ ')
>subplot (3,2,5)
>plot($x, z+y, ' m o ')$
>hold on
$>p l o t(x, z, ' k \prime)$
>subplot ($3,2,1$)
>plot(x, z, 'k')
>subplot (3,2,4)
>title('empty')
>subplot (3,1,2)
$>p l o t(y)$
>orient tall
>help orient
>print -dps test1.ps Creates a pos file test1.ps of this plot (more options in the menu File/Save As..)
>help print
Turn on Tools/Edit Plots and right click to change properties of the plots. For inclusion of plots in presentations and papers it is often a good idea to increase the font sizes and thicken the lines.

[^0]: *This is partly based on lecture notes by Christian Mehl and Andreas Steinbrecher, both TU Berlin.

