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1. Motivation

Sec. 1.9 of the script [ 1] already presents a motivation for
the condition number

k(A) = |A]|A™Y (1)

of a matrix A € R™". As shown in [I], the condition
number leads to an upper bound for the error |Ax| in the
solution x + Ax of a system of linear equations Ax = b
with slightly changed initial data A + AA. Note that the

derivation in [ 1] leads to an upper bound for HLAXLL” , rather
than for the relative error
|Ax]|
_— 2)
x|

Moreover, only a change AA in the matrix is considered.
The influence of a change in the right-hand side Ab is not
treated.

Hence, these notes present an alternative derivation for
the condition of a system of linear equations. The goal is
to bound the relative error in Eq. (2) when both the matrix,
and the right-hand-side are perturbed. The derivation will
closely follow Sec. 1.2.2 in [2].

2. Alternative Derivation for Matrix Condition
Number

We start with the perturbed problem
[A+AA](x+Ax)=b+Ab 3)
of the original problem
Ax=b. “)
The derivation will require the following inequalities:

i) Matrix and vector norm must be compatible: |Ax| <
[ AL ]

ii) We assume that [A~|| |[AA] < 1.

Expanding Eq. (3) gives
Ax+AAx+ AAx+ AAAx =b + Ab, 5)
and using the exact solution, i.e. Ax = b, we get
Ax=A"'(Ab-AAx - AAAX). (6)
Taking the norm on both sides and using i) yields
|Ax| <|A7!] [Ab + AAx + AAAXx]| (7)
<|AT [ lAb] + JAA] [x] + [AA][Ax]). (8)

where we have used the triangle inequality for norms
|a+b| < |a]+]|b] in the last step. This previous inequality

is equivalent to
(1- A laAl) ax] < |A7] (lAb] + [AA]]x]).
€))

Using ii) results in

|ax| AT (|Ab|
x| = 1-[ATT]]AA]

. ||AA|), (10)

x|
and using |b|| = |Ax| < |A] |x] finally gives

[ax] AT 1A] (|Ab|+||AA|) an
I~ 1= AT JAA o] A

Introducing the condition number as defined in Eq. (1) leads
to the following upper bound for the relative error

Ax] _ n(A) (|Ab|+|AA|). )

T [AA] b A
STy BTl Al

If we make the stronger assumption in ii) that
|A7| [AA| «< 1, ie. |A7"]| |AA] is clearly smaller than

one, we get the simplified formula'

|Ax] A0, 1AA1) g

P “(A)(|b|+ Al

I'The symbol < denotes that the inequality does not follow from Eq. (12)
in a strict mathematical sense. However, together with HA’1 || [AA] « 1,
the inequality in Eq. (13) holds in practice almost always nevertheless.



3. Remarks and Interpretation

Based on the upper bound for the relative error in Eq. (12)
or in Eq. (13), we observe the following things:

* If the entries of the unknown vector x are not of the
same order of magnitude, then small entries can be
completely wrong even if both the condition number
% (A) and the perturbations AA and Ab are small.
The reason for that can be seen in Eq. (12) or Eq. (13):
the upper bound is based on the norm of Ax, AA, and
Ab. Hence, large relative errors of small entries might
be negligible in | Ax|| compared to small relative errors
of large entries, i.e. large relative errors of small entries
do not contribute significantly to the norm | Ax|. For
example, consider an exact solution x = (1e6, le —6)7.

A perturbed solution with Ax = (le — 3,1e — 6) can

then still yield a much smaller relative error 12 than

(]
the upper bound « (A) (% + %). However, an

absolute error of 1e—6 for the second entry zo = 1le—6is
really large and renders the small entry of the numerical
solution x = x + Ax completely useless.

AA Ab . .
w and w are the relative error of the original

input. These errors are usually at least on the order of
the machine precision €,,,., because we need to repre-
sent the values of the entries of the input with machine
numbers which leads to relative rounding errors on the
order of €,,,4ch-

Based on the previous remark, even if all the entries of
the unknown vector are on the same order of magnitude,
then we have to expect that up to the last logx (A)
digits in the numerical solution X may deviate from the
exact solution x.

4. Example Application

At the end of Sec 1.6.2 in [1], we concluded that “we
better not trust small residuals to always imply that we are
close to a solution”. The immediate question is: In which
cases can we trust small residuals? Equipped with the previ-
ous derivation and the upper bound in Eq. (13), we can now
answer this question.

Specifically, consider the system of linear equations
Ax = b with exact solution x and a solution x; computed
with some algorithm (e.g. an iterative algorithm providing
successively refined solutions xx, X1, ... ). The latter so-
lution will lead to a small residual error, i.e. in the notation
used in Sec 1.6.2 of [1]

Ax,=b-r. (14)

In order to apply the bounds as derived in previous sections,
we observe that x;, = x + Ax and -r = Ab (AA is equal to

the zero-matrix in this example). Hence, we get the upper
bound

x| 1Ab]
—— <k(A) ——. 15
AT a3

Therefore, a small residual ||r|| guarantees a “good” solution
if

* |lr|| is small compared to the right-hand-side |b||, and
* the condition number ~ (A) is sufficiently small.

Note that in the example considered in Sec. 1.6.2, the matrix

0.4343 0.4340
A= [0.4340 0.4337] (16)
has a condition number of k3 (A) ~ 8-10% Ky (A)

denotes the condition number with the spectral norm

|A]5 = \/Amaz (AT A) where \,,q, (B) denotes the maxi-

mal Eigenvalue of the symmetric (or Hermitian) matrix B.
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