
The Singular Value Decomposition

Prof. Walter Gander
ETH Zurich

Decenber 12, 2008

Contents

1 The Singular Value Decomposition 1

2 Applications of the SVD 3
2.1 Condition Numbers . 4
2.2 Normal Equations and Condition . 7
2.3 The Pseudoinverse . 7
2.4 Fundamental Subspaces . 8
2.5 General Solution of the Linear Least Squares Problem 9
2.6 Fitting Lines . 10
2.7 Fitting Ellipses . 11

3 Fitting Hyperplanes–Collinearity Test 13

4 Total Least Squares 15

5 Bibliography 18

1 The Singular Value Decomposition

The singular value decomposition (SVD) of a matrix A is very useful in the context of least squares
problems. It also very helpful for analyzing properties of a matrix. With the SVD one x-rays a
matrix!

Theorem 1.1 (The Singular Value Decomposition, SVD). Let A be an (m×n) matrix with m ≥ n.
Then there exist orthogonal matrices U (m × m) and V (n × n) and a diagonal matrix Σ =
diag(σ1, . . . , σn) (m× n) with σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0, such that

A = UΣV T

holds. If σr > 0 is the smallest singular value greater than zero then the matrix A has rank r.

Definition 1.1 The column vectors of U = [u1, . . . ,um] are called the left singular vectors and
similarly V = [v1, . . . ,vn] are the right singular vectors. The values σi are called the singular
values of A.

Proof The 2-norm of A is defined by ‖A‖2 = max‖x‖=1 ‖Ax‖. Thus there exists a vector x
with ‖x‖ = 1 such that

z = Ax, ‖z‖ = ‖A‖2 =: σ.

Let y := z/‖z‖. We have obtained Ax = σy with ‖x‖ = ‖y‖ = 1.
Now we construct vectors orthogonal to x and similarly to y and form the matrices V = [x, V1]

and U = [y, U1]. This could e.g. be done in Matlab by the command

> V = orth([x, rand(n, n-1)]), U = orth([y, rand(n, n-1)])

1

Now

A1 = UTAV =
[

yT

UT1

]
A [x, V1] =

[
yTAx yTAV1

UT1 Ax UT1 AV1

]
=
[
σ wT

0 B

]
because yTAx = yTσy = σyTy = σ and UT1 Ax = σUT1 y = 0 since U1 ⊥ y.

We claim that wT := yTAV1 = 0. In order to prove that we compute

A1

(
σ

w

)
=
(
σ2 + ‖w‖2

Bw

)
and conclude from that equation that∥∥∥∥A1

(
σ

w

)∥∥∥∥2

= (σ2 + ‖w‖2))2 + ‖Bw‖2 ≥ (σ2 + ‖w‖2)2.

Now since V and U are orthogonal ‖A1‖2 = ‖UTAV ‖2 = ‖A‖2 = σ holds and

σ2 = ‖A1‖2 = max
‖x‖6=0

‖A1x‖2 ≥
∥∥A1

(
σ
w

)∥∥2∥∥(σ
w

)∥∥2 ≥ (σ2 + ‖w‖2))2

σ2 + ‖w‖2
.

The last equation reads
σ2 ≥ σ2 + ‖w‖2,

and we conclude that w = 0. Thus we have obtained

A1 = UTAV =
[
σ 0
0 B

]
.

We can now apply the same construction to the sub-matrix B and thus finally end up with a
diagonal matrix.

Though this proof is constructive the singular value decomposition is not computed in this way.
An effective algorithm was designed by Golub and Reinsch [6]. They first transform the matrix by
orthogonal Householder-transformations to bidiagonal form. Then the bidiagonal matrix is further
diagonalized in a iterative process.

Let r = rank(A). Then σr+1 = . . . = σn = 0. Partition U = [U1, U2] and V = [V1, V2] where
U1 = [u1, . . . ,ur] and V1 = [v1, . . . ,vr] have r columns. Then with Σr := diag(σ1, . . . , σr):

A = [U1, U2]
(

Σr 0
0 0

)
[V1, V2]T (1)

= U1ΣrV T1 (2)

=
r∑
i=1

uiv
T
i σi (3)

Equation (1) is the full decomposition with square matrices U and V . When making use of the
zeros we obtain the “economy” and the “reduced” version (Equation (2)) of the SVD.

In Matlab there are two variants to compute the SVD:

> [U S V] = svd(A) % gives the full decomposition

> [U S V] = svd(A,0) % gives the economy version with an m-by-n matrix U

The economy version computed by Matlab is Equation (2) with r = n. To compute the reduced
version (Equation (3)) we need to make a rank decision, that is define the variable r.

Example 1.1 The matrix A has rank one and its reduced SVD is given by

A =


1 1 1
1 1 1
1 1 1
1 1 1

 =


1
2
1
2
1
2
1
2

 (2
√

3)
(

1√
3

1√
3

1√
3

)

2

A = ones(4,3)
[U,S,V] = svd(A)
U =

-5.0000e-01 8.6603e-01 -4.1633e-17 0
-5.0000e-01 -2.8868e-01 -5.7735e-01 -5.7735e-01
-5.0000e-01 -2.8868e-01 7.8868e-01 -2.1132e-01
-5.0000e-01 -2.8868e-01 -2.1132e-01 7.8868e-01

S =
3.4641e+00 0 0

0 3.1402e-16 0
0 0 0
0 0 0

V =
-5.7735e-01 8.1650e-01 0
-5.7735e-01 -4.0825e-01 -7.0711e-01
-5.7735e-01 -4.0825e-01 7.0711e-01

[U,S,V] = svd(A,0) %%% economy SVD
U =

-5.0000e-01 8.6603e-01 -4.1633e-17
-5.0000e-01 -2.8868e-01 -5.7735e-01
-5.0000e-01 -2.8868e-01 7.8868e-01
-5.0000e-01 -2.8868e-01 -2.1132e-01

S =
3.4641e+00 0 0

0 3.1402e-16 0
0 0 0

V =
-5.7735e-01 8.1650e-01 0
-5.7735e-01 -4.0825e-01 -7.0711e-01
-5.7735e-01 -4.0825e-01 7.0711e-01

S(1)*U(:,1)*V(:,1)’ %%% reduced svd
ans =

1.0000e-00 1.0000e-00 1.0000e-00
1.0000e+00 1.0000e+00 1.0000e-00
1.0000e+00 1.0000e+00 1.0000e-00
1.0000e+00 1.0000e+00 1.0000e-00

> ans-A
ans =

-2.2204e-16 -2.2204e-16 -3.3307e-16
0 0 -1.1102e-16
0 0 -1.1102e-16
0 0 -1.1102e-16

2 Applications of the SVD

In Equation (3) we have decomposed the matrix A as a sum of matrices uiv
T
i of rank one. Since

||uivTi ||22 = max
‖x‖=1

‖ui(vTi x)‖2 = max
‖x‖=1

(vTi x)2 = (vTi vi)2 = 1

we see from Equation (3) that the matrix A is computed by a weighted sum of matrices for which
the value of the norm is the same. The singular values are the weights. The main contribution in
the sum is given by the terms with the largest singular values. We see that we may approximate
A by a lower rank matrix by dropping the smallest singular values, i.e., changing their values to
zero. In fact let M denote the set of m× n matrices with rank p. The solution of

min
X∈M

||A−X||F

is given by

Ap =
p∑
i=1

uiv
T
i σi. (4)

A proof of this fact is given e.g. in [2].

Theorem 2.1 If A = UΣV T . The column vectors of V are the eigenvectors of the matrix ATA to
the eigenvalues σ2

i , i = 1, . . . , n. The column vectors of U are the eigenvectors of the matrix AAT .

Proof
ATA = (UΣV T)TUΣV T = V DV T , D = ΣTΣ = diag(σ2

1 , . . . , σ
2
n). (5)

3

Thus ATAV = V D and σ2
i is an eigenvalue of ATA. Similarly

AAT = UΣV (UΣV T)T = UTΣΣTUT , (6)

where ΣΣT = diag(σ2
1 , . . . , σ

2
n, 0, . . . , 0).

Theorem 2.2 Let A = UΣV T . Then

‖A‖2 = σ1, and ‖A‖F =

√√√√ n∑
i=1

σ2
i .

Proof Since U and V are orthogonal we have ‖A‖2 = ‖UΣV T ‖2 = ‖Σ‖2. Now

‖Σ‖22 = max
‖x‖=1

(σ2
1x

2
1 + · · ·+ σ2

nx
2
n) ≤ σ2

1(x2
1 + · · ·+ x2

n) = σ2
1

and since the max is attained for x = e1 it follows ‖A‖2 = σ1.
For the Frobenius norm we have

‖A‖F =
√∑

i,j

a2
ij =

√
trace(ATA) =

√√√√ n∑
i=1

σ2
i .

Theorem 2.3 Let A = UΣV T . Then the problem

‖Ax‖2 = min, subject to ‖x‖2 = 1 (7)

has the solution x = vn and the value of the minimum is min‖x‖2=1 ‖Ax‖2 = σn.

Proof We make use of the fact that for orthogonal V and V Tx = y we have ||x|| = ||V V Tx|| =
||V y|| = ||y||:

min
‖x‖2=1

‖Ax‖22 = min
‖x‖2=1

‖UΣV Tx‖22 = min
‖V V T x‖2=1

‖UΣ(V Tx)‖22

= min
‖y‖2=1

‖Σy‖22 = min
‖y‖2=1

(σ2
1y

2
1 + · · ·+ σ2

ny
2
n) ≥ σ2

n

The minimum is attained for y = en thus for x = V y = vn.

2.1 Condition Numbers

The principle of Wilkinson states that the result of a numerical computation is the result of an
exact computation for a slightly perturbed problem. This result allows us to estimate the influence
of finite arithmetic. A problem is said to be well conditioned if the results do not differ too much
when solving a perturbed problem. For an ill conditioned problem the solution of a perturbed
problem may be very different.

Consider a system of linear equations Ax = b with A n×n nonsingular and a perturbed system
(A+ εE)x(ε) = b where ε is small like e.g. the machine precision.

How do the solutions x(ε) and x = x(0) differ? We want to expand x(ε) ' x(0) + ẋ(0)ε. The
derivative ẋ(0) is obtained by differentiating:

(A+ εE)x(ε) = b

Ex(ε) + (A+ εE)ẋ(ε) = 0
⇒ ẋ(0) = −A−1Ex(0)
⇒ x(ε) ' x(0)−A−1Ex(0) ε

||x(ε)− x(0)|| ' ||A−1|| ||ε E|| ||x(0)||.

4

From the last equation we conclude for the relative error

||x(ε)− x||
||x||

' ||A−1|| ||A||︸ ︷︷ ︸
κ

condition number

||ε E||
||A||

. (8)

If we use the 2-norm as matrix norm then

||A|| := max
x6=0

||Ax||2
||x||2

= σmax(A), ‖A−1‖ =
1

σmin(A)

and the condition number is computed by

κ =
σmax(A)
σmin(A)

= cond(A) in Matlab.

Thus according to the principle of Wilkinson we have to expect that the numerical solution may
deviate by about κ units in the last digit from the exact solution. This can be seen well in the
following example:

Example 2.1 Hilbertmatrix

> A = hilb(5);
> x =[2190 470 6789 6793 9347]’;
> b =A*x %%% construct right hand side
b =

8.255650000000000e+03
5.865350000000000e+03
4.672752380952381e+03
3.911803571428572e+03
3.373871031746032e+03

> xx = A\b
xx =

2.189999999999666e+03
4.700000000062450e+02
6.788999999972891e+03
6.793000000041215e+03
9.346999999979722e+03

> cond(A)
ans =

4.766072502417230e+05

A similar but more difficult computation (see [1]) for

||b−Ax||2 = min and ||b− (A+ εE)x(ε)||2 = min

shows the estimate

||x(ε)− x||
||x||

' κ
(

2 + κ
||r||

||A|| ||x||

)
||ε E||
||A||

(Golub-Pereyra), (9)

where

κ := ||A|| ||A+|| = σ1(A)
σr(A)

,

with A+ the Pseudoinverse, see the next section.
Equation (9) tells us again what accuracy we can expect from the numerical solution. We have

to distinguish between good and bad models. For good models, i.e. if the residual ||r|| is small,
the situation is similar as for linear equations (8): the error in the solution may deviate by about
κ units in the last digit from the exact solution. However, when the model is bad, i.e. when ||r|| is
large then also the condition is worse and we must expect a larger error in the computed solution.

Example 2.2 Least Squares problem with small residual (good model)

> A = invhilb(6)/35791; A = A(:,1:5) %% 5 cols of (6x6) matrix
A =

0.0010 -0.0176 0.0939 -0.2112 0.2112
-0.0176 0.4107 -2.4643 5.9143 -6.1608
0.0939 -2.4643 15.7716 -39.4289 42.2453

5

-0.2112 5.9143 -39.4289 101.3886 -110.8938
0.2112 -6.1608 42.2453 -110.8938 123.2153

-0.0774 2.3235 -16.2644 43.3718 -48.7933
> K = cond(A)
K =

4.6968e+06
> b1 = A*[1 1/2 1/3 1/4 1/5]’ % construct compatible right hand side
b1 =

0.0129
-0.3872
2.7107

-7.2286
8.1322

-3.2529
> x11 = A\b1
x11 =

9.999999999129205e-01
4.999999999726268e-01
3.333333333220151e-01
2.499999999951682e-01
1.999999999983125e-01

>r = norm(b1-A*x11)
r =

1.109940445577350e-14
>fak = r/norm(A)/norm(x11)
fak =

3.694442192301665e-17
> K*fak
ans =

1.735200259707142e-10

The variable fak denotes the expression ||r||/(||A|| ||x||). Multiplied with the condition number,
we still get a small number so that indeed the number of wrong digits is only determined by the
condition number. However, using the normal equations (see next section), the number of false
digits is determined by the square of the condition number also for this good model:
> x21 = (A’*A)\(A’*b1) % NORMAL EQUATIONS
x21 =

1.000039250650201e+00
5.000131762672949e-01
3.333389969395881e-01
2.500024822148246e-01
2.000008837044892e-01

% 12 Digits are wrong!

Adding a vector orthogonal to the range of A to the right hand side will increase the residual thus
simulate a bad model:
> db =[-4620 -3960 -3465 -3080 -2772 -2520]’; % orth to R(A)
A’*db
ans =

-8.526512829121202e-14
-9.094947017729282e-13
1.455191522836685e-11
1.455191522836685e-11

0
> b2 = b1 + db/35 % INCOMPATIBLE NEW RIGHT HAND SIDE, BAD MODEL
b2 =

-1.319870637869855e+02
-1.135301053337431e+02
-9.628926266379817e+01
-9.522863289653824e+01
-7.106778799139448e+01
-7.525288480344221e+01

> x12 = A\b2
x12 =

1.000008892485514e+00
5.000029662567045e-01
3.333346036994334e-01
2.500005554342294e-01
2.000001974036514e-01

> r = norm(b2-A*x12)
r =

2.433658688527399e+02
> fak = r/norm(A)/norm(x12)
fak =

8.100384071623551e-01
> K*fak % large !!
ans =

3.804576662235421e+06

This time the number of false digits is given by κ2. With the normal equations we get the same
results as before:

6

> x22 = (A’*A)\(A’*b2) % NORMAL EQUATIONS
x22 =

1.000057139737775e+00
5.000192174132178e-01
3.333416019462666e-01
2.500036262393021e-01
2.000012915680996e-01

again 12 digits wrong!

2.2 Normal Equations and Condition

Using the normal equations we have to expect worse numerical results as predicted by Equation
(9) also for good models as shown in the example of the last section. Forming ATA leads to a
matrix with a squared condition number compared to the original matrix A. If A = UΣV T has
rank n then

κ(ATA) = κ(V TΣTUUTΣV) = κ(V TΣTΣV) =
σ2

1

σ2
n

= κ(A)2.

Forming ATA may result in a loss of information as a famous example by P. Läuchli shows:

A =

 1 1
δ 0
0 δ

 , ATA =
(

1 + δ2 1
1 1 + δ2

)
.

If δ <
√
ε (with ε machine precision) then numerically 1 + δ2 = 1 and the matrix of the normal

equations becomes singular though A has also numerically rank 2.

2.3 The Pseudoinverse

Definition 2.1 Let A = UΣV T be the singular value decomposition with

Σ =
(

Σr
0

)
∈ Rm×n, Σr := diag(σ1, . . . , σr, 0, . . . , 0) ∈ Rn×n

The the matrix A+ = V Σ+UT with

Σ+ = (Σ+
r 0) ∈ Rn×m, Σ+

r := diag(
1
σ1
, . . . ,

1
σr
, 0, . . . , 0) ∈ Rn×n (10)

is called the pseudo-inverse of A.

We have discussed the SVD only for the case in which A ∈ Rm×n with m ≥ n. This was mainly
for simplicity. The SVD exists for any matrix. It is usually computed such that the singular values
are ordered decreasingly. The representation A+ = V Σ+UT of the pseudo-inverse is also already
a SVD, except that the singular values 1

σ1
, · · · , 1

σr
are ordered increasingly. By simultaneously

permuting rows and columns one can reorder the decomposition and bring it into standard form
with decreasing elements in Σ+.

Theorem 2.4 (Penrose Equations). Y = A+ is the only solution of the matrix equations
(i) AY A = A (ii) Y AY = Y

(iii) (AY)T = AY (iv) (Y A)T = Y A

Proof It is simple to verify that A+ is a solution. Inserting the SVD e.g. in (i) we get

AA+A = UΣV TV Σ+UTUΣV T = UΣΣ+ΣV T = UΣV T = A

More challenging is to prove uniqueness. To do this assume that Y is also a solution. Then

Y = Y AY because of (ii)
= (Y A)TY = ATY TY because of (iv)
= (AA+A)TY TY = AT (A+)TATY TY because of (i)

7

= AT (A+)TY AY because of (iv)
= AT (A+)TY = (A+A)TY because of (ii)
= A+AY because of (iv)
= A+AA+AY because of (i)
= A+(AA+)T (AY)T = A+(A+)TATY TAT because of (iii)
= A+(A+)TAT because of (i)
= A+(AA+)T = A+AA+ because of (iii)

Y = A+ because of (ii)

2.4 Fundamental Subspaces

Associated with a matrix A ∈ Rm×n are four fundamental subspaces:

Definition 2.2 1. R(A) = {y|y = Ax, x ∈ Rn} ⊂ Rm the range or column space.

2. R(A)⊥ the orthogonal complement of R(A). If z ∈ R(A)⊥ then zTy = 0, ∀y ∈ R(A).

3. R(AT) = {z|z = ATy, y ∈ Rm} ⊂ Rn the row space.

4. N (A) = {x|Ax = 0} the null space.

Theorem 2.5 The following relations hold

1. R(A)⊥ = N (AT). Thus Rm = R(A)⊕N (AT).

2. R(AT)⊥ = N (A). Thus Rn = R(AT)⊕N (A).

Proof Let y ∈ R(A) and z ∈ R(A)⊥. The by definition

0 = yTz = (Ax)Tz = xT (ATz), ∀x.

Thus it follows that ATz = 0 which means z ∈ N (AT) and therefore R(A)⊥ ⊂ N (AT).
On the other hand let y ∈ R(A) and z ∈ N (AT). Then we have

yTz = (Ax)Tz = xT (ATz) = xT 0 = 0

which means that z ∈ R(A)⊥. Thus also N (AT) ⊂ R(A)⊥. The second statement is verified in
the same way.

With the help of the pseudo-inverse we can describe projectors on these subspaces.

Theorem 2.6
1. PR(A) = AA+ 2. PR(AT) = A+A
3. PN (AT) = I −AA+ 4. PN (A) = I −A+A

Proof We proof only the first relation. The other proofs are similar. Because of Relation (iii)
in Theorem 2.4 we have (AA+)T = AA+. Thus PR(A) is symmetric. Furthermore (AA+)(AA+) =
(AA+A)A+ = AA+ because of (i). Thus PR(A) is also idempotent and is a projector. Now let
y = Ax ∈ R(A); then PR(A)y = AA+y = AA+Ax = Ax = y. So elements in R(A) are projected
on themselves. Finally take z ⊥ R(A) ⇐⇒ ATz = 0 then PR(A)z = AA+z = (AA+)Tz =
(A+)TATz = 0.

Note that the projectors can be computed using the SVD. Let U1 ∈ Rm×r, U2 ∈ Rm×n−r, V1 ∈ R×r,
V2 ∈ Rn×n−r and Σr ∈ Rr×r in the following SVD

A =
(
U1 U2

)(Σr 0
0 0

)(
V T1
V T2

)
.

Then inserting this decomposition in the expressions for the projectors of Theorem 2.6 we obtain:

1. PR(A) = U1U
T
1 2. PR(AT) = V1V

T
1

3. PN (AT) = U2U
T
2 4. PN (A) = V2V

T
2

8

2.5 General Solution of the Linear Least Squares Problem

We are now ready to describe the general solution for the linear least squares problem. We are
given a system of equations with more equations than unknowns

Ax ≈ b.

In general b will not be in R(A) therefore the system will not have a solution. A consistent system
can be obtained if we project b on R(A) :

Ax = AA+b ⇐⇒ A(x−A+b) = 0.

We conclude that x−A+b ∈ N (A). That means

x−A+b = (I −A+A)w

where we have generated an element in N (A) by projecting an arbitrary vector w onto it. Thus
we have shown

Theorem 2.7 The general solution of the linear least squares problem Ax ≈ b is

x = A+b + (I −A+A)w, w arbitrary. (11)

Using the expressions for projectors from the SVD we obtain for the general solution

x = V1Σ−1
r UT1 b + V2c (12)

where we have introduced the arbitrary vector c := V T2 w.
Thus we have obtain an algorithm for computing the general solution of the linear least squares

problem with (possibly) rank deficient coefficient matrix:

Algorithm 2.1: General solution of the linear least squares problem Ax ≈ b

1. Compute the SVD: [U S V] = svd(A).

2. Make a rank decision, i.e. choose r such that σr > 0 and σr+1 = · · · = σn = 0. This decision
is necessary because rounding errors will prevent the zero singular values to be exactly zero.

3. Set V1=V(:,1:r), V2= V(:,r+1:n), Sr=S(1:r,1:r), U1=U(:,1:r).

4. The solution with minimal norm is xm=V1*(Sr\U1’*b).

5. The general solution is x = xm + V2*c with an arbitrary c ∈ Rn−r.

If A has full rank (rank(A) = n) then the solution of the linear least squares problem is unique:

x = A+b = V Σ+UT b.

The matrix A+ is called pseudo-inverse because in the full rank case the analogies of Ax = b ⇒
x = A−1b and Ax ≈ b⇒ x = A+b are obvious.

The general least squares solution presented in Theorem 2.7 is also valid for a system of equa-
tions Ax = b where m ≤ n, i.e. an under-determined linear system with fewer equations than
unknowns. In this case the x = V1Σ−1

r UT1 b solves the problem

min ‖x‖ subject to Ax = b.

9

2.6 Fitting Lines

We consider the problem of fitting lines by minimizing the sum of squares of the distances to
given points (see Chapter 6 in [3]). In the plane we can represent a straight line uniquely by the
equations

c+ n1x+ n2y = 0, n2
1 + n2

2 = 1. (13)

The unit vector (n1, n2) is orthogonal to the line. A point is on the line if its coordinates (x, y)
satisfy the first equation. On the other hand if P = (xP , yP) is some point not on the line and we
compute

r = c+ n1xP + n2yP

then |r| is its distance from the line. Therefore if we want to determine the line for which the
sum of squares of the distances to given points is minimal, we have to solve the constrained least
squares problem

1 xP1 yP1

1 xP2 yP2

...
...

...
1 xPm yPm


 c

n1

n2

 ≈


0
0
...
0

 subject to n2
1 + n2

2 = 1. (14)

Let A be the matrix of the linear system (14). Using the QR decomposition A = QR we can
reduce the the linear system to Rx ≈ 0, i.e., the problem becomes r11 r12 r13

0 r22 r23
0 0 r33

 c
n1

n2

 ≈
 0

0
0

 subject to n2
1 + n2

2 = 1. (15)

Since the nonlinear constraint only involves two unknowns; we now have to solve(
r22 r23
0 r33

)(
n1

n2

)
≈
(

0
0

)
, subject to n2

1 + n2
2 = 1. (16)

The solution is obtained using Theorem 2.3. Inserting the values into the first component of (15)
and setting it to zero, we then can compute c.

The constraint least squares problem

A

(
c

n

)
≈
(

0
0

)
, subject to ||n||2 = 1

is therefore solved by the following Matlab function:

Algorithm 2.2: Constrained Linear Least Squares

function [c,n] = clsq(A,dim);
% [c,n] = CLSQ(A,dim)
% solves the constrained least squares Problem
% A (c n)’ ~ 0 subject to norm(n,2)=1
% length(n) = dim
[m,p] = size(A);
if p < dim+1, error (’not enough unknowns’); end;
if m < dim, error (’not enough equations’); end;
m = min (m, p);
R = triu (qr (A));
[U,S,V] = svd(R(p-dim+1:m,p-dim+1:p));
n = V(:,dim);
c = -R(1:p-dim,1:p-dim)\R(1:p-dim,p-dim+1:p)*n;

10

2.7 Fitting Ellipses

We want to fit ellipses to measured points by minimizing the “algebraic distance” (see [4]). The
solutions x = [x1, x2] of a quadratic equation

xTAx + bTx + c = 0 (17)

are points on an ellipse if A is symmetric and definite (i.e. if det(A) = a11a22 − a2
12 > 0). For

each measured points xi we obtain by inserting it in (17) an equation for the unknown coefficients
u = [a11, a12, a22, b1, b2, c]. Since (17) is homogeneous in the coefficients, we need some normalizing
condition in order to make the solution unique. A possibility that includes all cases is to normalize
the coefficients by ‖u‖ = 1. We obtain the problem

||Bu|| = min subject to ||u|| = 1

which can be solved using the SVD. If we write the measured points as rows in the matrix X:

X =[-2.8939 4.1521

-2.0614 2.1684

-0.1404 1.9764

2.6772 3.0323

5.1746 5.7199

3.2535 8.1196

-0.1724 6.8398]

then

B = [X(:,1).^2 X(:,1).*X(:,2) X(:,2).^2 ...

X(:,1) X(:,2) ones(size(X(:,1)))]

The solution is obtained using Theorem 2.3:

[U S V]= svd(B);

u = V(:,6);

A = [u(1) u(2)/2; u(2)/2 u(3)];

b = [u(4); u(5)]; c = u(6);

We obtain the coefficients:

A =
(
−0.0316 0.0227

0.0227 −0.0589

)
b =

(
−0.1484

0.5316

)
c = −0.8300

If the coefficients u = [a11, a12, a22, b1, b2, c] are known, we can compute the geometric quantities,
the axes and the center point, as follows. To find a coordinate system in which then axes of the
ellipse are parallel to the coordinate axis, we compute the eigenvalue decomposition:

A = QDQT , Q orthogonal D = diag(λ1, λ2). (18)

Introducing the new variable x̄ = QTx, Equation (17) becomes

x̄TQTAQx̄ + (QT b)T x̄ + c = 0,

or written in components (using b̄ = QT b):

λ1x̄1
2 + λ2x̄2

2 + b̄1x̄1 + b̄2x̄2 + c = 0.

We transform this equation into the “normal form”:

(x̄1 − z̄1)2

a2
+

(x̄2 − z̄2)2

b2
= 1.

(z̄1, z̄2) is the center in the rotated coordinate system:

(z̄1, z̄2) =
(
− b̄1

2λ1
,− b̄2

2λ2

)

11

To obtain the center in the non rotated system we have to transform the coordinates: z = Qz̄.
The axis are given by

a =

√
b̄21

4λ2
1

+
b̄22

4λ1λ2
− c

λ1
, b =

√
b̄21

4λ1λ2
+

b̄22
4λ2

2

− c

λ2
.

We have now all the elements to write a Matlab function to fit an ellipse to measured points:

Algorithm 2.3: Algebraic Ellipse Fit

function [z, a, b, alpha] = algellipse(X);
% [z, a, b, alpha] = algellipse(X)
% fits an ellipse by minimizing the ‘‘algebraic distance’’
% to given points Pi = [X(i,1), X(i,2)]
% in the least squares sense x’A x + bb’x + c = 0
% z is the center. a,b the main axes
% alpha angle between a and x-axe

[U S V]= svd([X(:,1).^2 X(:,1).*X(:,2) X(:,2).^2 ...
X(:,1) X(:,2) ones(size(X(:,1)))]);

u = V(:,6);
A = [u(1) u(2)/2; u(2)/2 u(3)];
bb = [u(4); u(5)]; c = u(6);

[Q D] = eig(A);
alpha = atan2(Q(2,1), Q(1,1));
bs = Q’*bb;
zs = -(2*D)\bs; z = Q*zs;
h = -bs’*zs/2-c;
a = sqrt(h/D(1,1));
b = sqrt(h/D(2,2));

If we want to draw the ellipse we do this best using polar coordinates:

Algorithm 2.4: Drawing an Ellipse

function drawellipse(C, a, b, alpha)
% drawellipse(C, a, b, alpha)
% draw ellipse with center C semiaxis a and b
% alpha angle between a and x-axe
%
s = sin(alpha); c = cos(alpha);
Q =[c -s; s c];
theta = [0:0.02:2*pi];
u = diag(C)*ones(2,length(theta)) + ...

Q*[a*cos(theta); b*sin(theta)];
plot(u(1,:),u(2,:));
plot(C(1),C(2),’+’);

Finally here is the main program for computing and drawing Figure 1:

X =[-2.8939 4.1521

-2.0614 2.1684

-0.1404 1.9764

12

2.6772 3.0323

5.1746 5.7199

3.2535 8.1196

-0.1724 6.8398]

axis([0 10 0 10]); axis(’equal’); hold

plot(X(:,1), X(:,2),’o’);

[z, a, b, alpha] = algellipse(X)

drawellipse(z, a, b, alpha)

Figure 1: Fitting an Ellipse to Measured Points

3 Fitting Hyperplanes–Collinearity Test

Function clsq can be used to fit an (n− 1)-dimensional hyperplane in Rn to given points. Let the
rows of the matrix X = [x1,x2, . . . ,xm]T contain the coordinates of the given points, i.e. point Pi
has the coordinates xi = X(i, :), i = 1, . . . ,m. Then the call

>> [c, N] = clsq ([ones(m,1) X], n);

determines the hyperplane in normal form c+N1y1 +N2y2 + . . .+Nnyn = 0.
In this section, we will show how we can compute also best fit hyperplanes of lower dimensions

s, where 1 ≤ s ≤ n − 1. We follow the theory developed in [5]. An s-dimensional hyperplane α
in Rn can be represented in parameter form:

α : y = p + a1t1 + a2t2 + · · ·asts = p +At. (19)

In this equation p is a point on the plane and ai are linearly independent direction vectors, thus
the hyperplane is determined by the data p and A = [a1, . . . ,as].

Without loss of generality, we assume that A is orthogonal, i.e., ATA = Is. If we now want to
fit a hyperplane to the given set of points X, then we have to minimize the distance of the points
to the plane. The distance di of point Pi = xi to the hyperplane is given by

di = min
t
||p− xi +At||2.

To determine the minimum we solve grad d2
i = 2AT (p − xi + At) = 0 for t, and, since A is

orthogonal, we obtain
t = AT (xi − p). (20)

Therefore the distance becomes

d2
i = ||p− xi +AAT (xi − p)||22 = ||P(xi − p)||22,

13

where we denoted by P = I − AAT , the projector onto the complement of the range of A, i.e. on
the null space of AT .

Our objective is to minimize the sum of squares of the distances of all points to the hyperplane.
We want to minimize the function

F (p, A) =
m∑
i=1

||P(xi − p)||22. (21)

A necessary condition is gradF = 0. We first consider the first part of the gradient, the partial
derivative

∂F

∂p
= −

m∑
i=1

2PTP(xi − p) = −2P(
m∑
i=1

xi −mp) = 0,

where we made use of the property of a projector PTP = P. Since P projects the vector
∑m
i=1 xi−

mp onto 0, this vector must be in the range of A, i.e.

p =
1
m

m∑
i=1

xi +Aτ. (22)

Inserting this expression into Equation (21), the objective function to be minimized simplifies to

G(A) =
m∑
i=1

||Px̂i||22 = ||PX̂T ||2F , (23)

where we put

x̂i = xi −
1
m

m∑
i=1

xi,

and where we used the Frobenius norm a matrix (||A||2F :=
∑
i,j a

2
ij). Now since P is symmetric,

we may also write

G(A) = ||X̂P||2F = ||X̂(I −AAT)||2F = ||X̂ − X̂AAT ||2F . (24)

If we define Y := X̂AAT , which is a matrix of rank s, then we can consider the problem of
minimizing

||X̂ − Y ||2F = min, subject to rank(Y) = s.

We discussed this problem already (see Equation 4). The solution is:

1. Compute the singular value decomposition of X̂ = UΣV T , with

U, V orthogonal and Σ = diag(σ1, σ2 . . . σn)

and σ1 ≥ σ2 ≥ · · · ≥ σn.

2. The minimizing matrix is then given by Y = UΣsV T , where

Σs = diag(σ1, σ2 . . . , σs, 0, 0, . . . , 0).

Now if Y = UΣsV T , we have to find an orthogonal matrix A such that X̂AAT = Y . It is easy to
verify, that if we choose A = V1 where V1 = V (:, 1:s), then X̂AAT = UΣsV T . Thus the singular
value decomposition of X̂ gives us all the lower-dimensional hyperplanes that fit best the given
points:

y = p + V1t, with p =
1
m

m∑
i=1

xi.

Notice that V2 = V (:, s+1:n) gives us also the normal form of the hyperplane: Here the hyperplane
is described as the solution of the linear equations

V T2 y = V T2 p.

14

In order to compute the hyperplanes, we therefore essentially have to compute one singular value
decomposition. This is done by the Matlab function hyper.m (Algorithm 3.1).

Algorithm 3.1: Computation of Hyperplanes.

function [V,p] = hyper(Q);
% Fits a hyperplane of dimension s <n
% to a set of given points Q(i,:) belonging to R^n.
% The hyperplane has the equation
% X = p + V(:,1:s)*tau (Parameter Form) or
% is defined as solution of the linear
% equations V(:,s+1:n)’*(y - p)=0 (Normal form)
m = max(size(Q));
p = sum(Q)’/m;
Qt = Q - ones(size(Q))*diag(p);
[U S V] = svd(Qt, 0);

The reader should note that the statement [U S V] = svd(Qt, 0) computes the “economy
size” singular value decomposition. If Qt is an m-by-n matrix with m > n, then only the first n
columns of U are computed, and S is an n-by-n matrix.

4 Total Least Squares

The linear least squares problem Ax ≈ b has so far been solved by projecting the vector b on the
range of A:

Ax = PR(A)b = AA+b.

With “Total Least Squares” the system of equations is made consistent by changing both A and b.
We are looking for a matrix Â and a vector b̂ ∈ R(Â) that differ as little as possible from the given
data

||[A, b]− [Â, b̂||F = min, subject to b̂ ∈ R(Â).

The constraint says that Ĉ := [Â, b̂] must have rank n. In general C := [A, b] will have rank n+ 1
thus our problem becomes

min
rank Ĉ=n

‖C − Ĉ‖F .

If we introduce ∆ = C − Ĉ and write the condition rank Ĉ = n as Ĉz = 0 with z =
(

x
−1

)
6= 0 then

the problem is
‖∆‖2F = min subject to (C + ∆)z = 0. (25)

The solution is given by Equation (4). Let [A, b] = C = UΣV T be the SVD. Then

[Â, b̂] = Ĉ =
n∑
i=1

σiuiv
T
i = U Σ̂V T , with Σ̂ = diag(σ1, . . . , σn, 0),

or equivalent
∆ = −σn+1un+1v

T
n+1.

We have in this case Ĉvn+1 = [Â, b̂]vn+1 = 0 and if vn+1,n+1 6= 0 then the total least squares
solution exists:

Âx̂ = b̂, x̂ = − 1
vn+1,n+1

v(1 : n, n+ 1).

This leads to the following Matlab function:

Algorithm 4.1: Total Least Squares

15

function x = lsqtotal(A,b);
% x = LSQTOTAL(A,b) computes the total least squares solution.
[m,n]=size(A);
[U, Sigma, V] = svd([A,b]);
s = V(n+1,n+1);
if s == 0 ,
error(’Total Least Squares Solution does not exist’)
end
x = -V(1:n,n+1)/s;

The total least squares solution is unique only if σn > σn+1. Furthermore the total least squares
solution solves the equation

(ATA− σ2
n+1I)x̂ = AT b. (26)

Proof Since C = [A, b] = UΣV T we have Cvn+1 = σn+1un+1 and therefore

CTCvn+1 = σn+1C
Tun+1 = σ2

n+1vn+1.

Dividing the last equation by vn+1,n+1 and replacing C = [A, b] we obtain(
ATA AT b

bTA bT b

)(
x̂

−1

)
= σ2

n+1

(
x̂

−1

)
and the first equation is our claim.

A variant of total least squares is given if some elements of the matrix A have no errors. Let
us consider Ax ≈ b with A = [A1, A2] where A1 ∈ Rm×l has no error. The total least squares
problem (A+ E)x = b + r subject to ‖E‖2F + ‖r‖2 = min becomes:

‖∆‖2F = min subject to (C + ∆)z = 0

with C = [A1, A2, b], ∆ = [0,∆2] and ∆2 = [E2, r]. We can transform the constraint by pre-
multiplying with an orthogonal matrix QT such that

QT (C + ∆)z =
(
R11 R12

0 R22

)
u +

(
0 ∆̃12

0 ∆̃22

)
v = 0, R11 ∈ Rl×l, z =

(
u

v

)
.

Now ‖∆‖2F = ‖QT∆‖2F = ‖∆̃12‖2F + ‖∆̃22‖2F = min if we choose ∆̃12 = 0 and minimize ∆̃22. So
the algorithm for constrained total least squares becomes:

1. Reduce C = [A1, A2, b] to

QTC =
(
R11 R12

0 R22

)
by performing l Householder transformations.

2. Compute v̂ the solution of the total least squares problem (R22 + ∆̃22)v = 0.

3. Solve R11u = −R22v̂ for u.

4. z =
(
u
v̂

)
and x = [z1, . . . , zn].

Example 4.1 We want to fit a line through given points (ξi, ηi), i = 1, . . . ,m. The equation

y = ax+ b

is used for regression and total least squares. The equations become ξ1 1
...

...
ξm 1

(a
b

)
≈

 η1
...
ηm


The geometric fit is done as explained in Section 2.6.

16

xi = [1 2 4 5 6 7 9]’

eta = [4 1 5 6 5 7 9]’

axis([-1, 11 -1, 11])

hold

plot(xi,eta,’x’)

% Minimizing geometric distance

A = [ones(size(xi)) xi eta]

[c, n] = clsq(A,2)

xx = -1:11

plot(xx,-c/n(2)-n(1)*xx/n(2),’-’)

% Regression

A = [xi ones(size(xi))]

x = A\eta;

plot(xx,x(1)*xx+x(2),’-.’)

% naive TLS

A = [xi ones(size(xi))]

x = lsqtotal(A,eta);

plot(xx,x(1)*xx+x(2),’:’)

% constrained TLS

C = [ones(size(xi)) xi eta];

m = max(size(C));

sqm = sqrt(m);

% construct Householder vector

u = ones(size(xi)); u(1) = u(1) +sqm;

u = u/sqrt(sqm*(1+sqm));

QC = C-u*u’*C;

AA = QC(2:m,2)

a = lsqtotal(AA,QC(2:m,3))

b = -(QC(1,2)*a -QC(1,3))/ QC(1,1)

plot(xx, a*xx+b,’-’)

Figure 2: Line Fits: Geometric fit and constrained TLS −, Regression −· and naive TLS ··

We see from Figure 2 that naive total least squares is not useful to fit geometric elements. However,
the solution with constrained total least squares, where the elements in the matrix that are 1 are
treated as exact delivers the same solution as the geometric fit.

17

5 Bibliography

References

[1] Åke Björck, Numerical Methods for Least Squares Problems SIAM, 1996.

[2] Gene H. Golub, Charles F. Van Loan, Matrix Computations, Johns Hopkins Series in
the Mathematical Sciences, 3rd edition, 1996.

[3] W. Gander and J. Hřeb́ıček, Solving Problems in Scientific Computing using Maple and
Matlab, Springer Verlag, third edition 1997.

[4] Walter Gander, Gene H. Golub and Rolf Strebel, Least-Squares Fitting of Circles
and Ellipses, BIT 34, 558-578, 1994.

[5] H. Späth, Orthogonal least squares fitting with linear manifolds. Numer. Math., 48, 1986,
pp. 441–445.

[6] J. Wilkinson and Chr. Reinsch, Linear Algebra, Springer Verlag, 1971.

18

