Lineare Algebra für D-ITET, D-MATL, RW

Serie 11

Aufgabe 11.1

Auigabe 11.1		
11.1a)	Reelle, symmetrische Matrizen sind diagonalisierbar.	
(i) Ric	htig.	(ii) Falsch.
11.1b) Zu jeder reellen $n \times n$ Matrix A gibt es eine orthonormale Eigenbasis.		
(i) Ric	htig.	(ii) Falsch.
11.1c)	Für eine diagonalisierbare Matrix gilt für eine	en Eigenwert λ , dass
(i) algebraische Vielfachheit < geometrische Vielfachheit		
(ii) algebraische Vielfachheit > geometrische Vielfachheit		
(iii) algebraische Vielfachheit = geometrische Vielfachheit		
11.1d) Eigenvektoren zu verschiedenen Eigenwerten sind linear unabhängig.		
(i) Ric	htig.	(ii) Falsch.
11.1e) Eigenvektoren zu verschiedenen Eigenwerten sind orthogonal.		
(i) Ric	htig.	(ii) Falsch.
11.1f) Ähnliche Matrizen haben dieselben Eigenwerte.		
(i) Ric	htig.	(ii) Falsch.
11.1g)	Ähnliche Matrizen haben dieselben Eigenvektoren.	

Aufgabe 11.2

11.2a) Berechnen Sie die Eigenwerte und die zugehörigen Eigenvektoren von

$$C = \begin{bmatrix} 2 & 0 & -3 \\ 0 & 2 & 0 \\ -3 & 0 & 2 \end{bmatrix}.$$

- **11.2b**) Bestimmen Sie eine orthonormale Eigenbasis zu C.
- 11.2c) Berechnen Sie die Matrix

$$e^C = \lim_{N \to \infty} \sum_{n=0}^{N} \frac{1}{n!} C^n$$

.

11.2d) Prüfen Sie b) und c) mit MATLAB nach.

Hinweis: Beachten Sie den Unterschied zwischen den Funktionen exp und expm.

Aufgabe 11.3

Gegeben sei das Differentialgleichungssystem 1. Ordnung $\dot{y} = Ay$, wobei

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

11.3a) Diagonalisieren Sie die Matrix, d. h. bestimmen Sie eine Transformationsmatrix T und eine Diagonalmatrix D, so dass $A = TDT^{-1}$.

11.3b) Bestimmen Sie die allgemeine Lösung der Differentialgleichung, indem Sie die neuen Variablen $x(t) = T^{-1}y(t)$ einführen.

Hinweis: Die allgemeine Lösung einer Differentialgleichung der Form $\dot{z}=az$ ist gegeben durch $z(t)=ce^{at}$ mit einer Konstanten c. Zum Beispiel gilt für a=-2: Die Differentialgleichung $\dot{z}=-2z$ hat die Lösung $z(t)=ce^{-2t}$, wobei die Konstante c aus der Anfangsbedingung $z_0=z(0)=c$ bestimmt werden kann.

11.3c) Bestimmen Sie die spezielle Lösung zu den Anfangsbedingungen

$$y(0) = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}.$$

11.3d) Bestimmen Sie alle Anfangsbedingungen $y_1(0), y_2(0), y_3(0)$, für welche die zugehörigen Lösungen $y_1(t), y_2(t), y_3(t)$ gegen Null streben für $t \to +\infty$.

Abgabe:

Semesterwoche 13 in den jeweiligen Übungen beim zugeteilten Assistenten.