Problem set - Week 4

More integration problems, path integrals

1. Compute the following integrals.
(a) $\int x \log x d x$
(b) $\int \frac{d x}{x^{2} \sqrt{x^{2}+1}}$
(c) $\int \frac{d x}{x^{2}\left(x^{2}-1\right)}$
2. Sketch the region enclosed by the line $x=4$, the curve $y=\sqrt{x}$ and the x axis. Compute its area. Do the same for the region in the first quadrant that is bounded by $y=x^{3}$ and $y=4 x$.
3. Compute the following integrals.
(a) $\int_{0}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}}$
(b) $\int_{e}^{\infty} \frac{d x}{x \log x}$
(c) $\int_{0}^{3} \frac{x d x}{\left(x^{2}-1\right)^{2 / 3}}$
4. For which $x \in(0,3 \pi / 2)$ is $f(x)=\int_{x}^{2 x} \frac{\sin t}{t} d t$ a local maximum ?
5. Compute the length of the curve defined by $y=\sqrt{x^{3}}$ on the interval $0 \leq x \leq 28$.
6. Compute the line integral of $x+y^{2}$ over the segment of the circle $x^{2}+y^{2}=4$ going from $(2,0)$ to $(0,2)$. Then compute again this line integral but going this time from $(0,2)$ to $(2,0)$. Finally compute it over a path of your choice going from $(2,0)$ to $(0,2)$.
