Problem set - Week 6

Chain rule for partial derivatives
 Change of bases and determinants

1. The lengths a, b, c of the edges of a rectangular box are changing with time. At some fixed time t_{0}, we have the data $a=1, b=2, c=3, d a / d t=d b / d t=1$ and $d c / d t=-3$.

At what rates are the volume and the surface area of the box changing at t_{0} ? Are the interior diagonals of the box increasing or decreasing in length ?
2. Under mild continuity restrictions, if $F(x)=\int_{a}^{b} g(t, x) d t$, then $F^{\prime}(x)=\int_{a}^{b} g_{x}(t, x) d t$. Together with the chain rule, this allows to derivate $F(x)=\int_{a}^{f(x)} g(t, x) d t$ by considering $G(u, x)=\int_{a}^{u} g(t, x) d t$ where $u=f(x)$.
Find the derivative of

$$
F(x)=\int_{0}^{x^{2}}\left(t^{2}+x^{3}\right)^{3 / 2} d t
$$

3. For the following sets of data, find the matrix B of the linear transformation $T(\vec{x})=A \vec{x}$ with respect to basis \mathcal{B}.
(a) $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\}$;
(b) $T(\vec{x})=\vec{v}_{2} \times \vec{x}$ and $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ a basis of perpendicular vectors, such that $\vec{v}_{3}=\vec{v}_{1} \times \vec{v}_{2}$.
4. Show that if the 3×3 matrix A represents the reflection about a plane, then A is similar to

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

5. Find the derivative of

$$
f(x)=\operatorname{det}\left(\begin{array}{ccccc}
1 & 1 & 2 & 3 & 4 \\
9 & 0 & 2 & 3 & 4 \\
9 & 0 & 0 & 3 & 4 \\
x & 1 & 2 & 9 & 1 \\
7 & 0 & 0 & 0 & 4
\end{array}\right)
$$

6. Compute the inverse of $\left(\begin{array}{rrr}0 & -1 & \alpha \\ -1 & 2 & 0 \\ -2 & 4 & 1\end{array}\right)$, where $\alpha \in \mathbb{R}$. How does the inverse depends on α ?
7. Consider the following $n \times n$ matrix,

$$
T_{n}:=\left(\begin{array}{cccccc}
1 & 1 & 0 & \cdots & \cdots & 0 \\
1 & 2 & 1 & 0 & & \vdots \\
0 & 1 & 2 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & \ddots & 1 \\
0 & \cdots & \cdots & 0 & 1 & 2
\end{array}\right) .
$$

(a) Using the Laplace expansion, prove that

$$
\operatorname{det}\left(T_{n}\right)=2 \cdot \operatorname{det}\left(T_{n-1}\right)-\operatorname{det}\left(T_{n-2}\right) \text { for } n>2 .
$$

(b) Prove by induction that

$$
\operatorname{det}\left(T_{n}\right)=1 \quad \text { for all } n \in \mathbb{N}
$$

8. Verify

$$
a d-b c=\vec{v}_{\perp} \cdot \vec{w}=\left\|\vec{v}_{\perp}\right\|\|\vec{w}\| \cos \left(\frac{\pi}{2}-\alpha\right)=\left\|\vec{v}_{\perp}\right\|\|\vec{w}\| \sin \alpha .
$$

What is the geometric interpretation of $|\operatorname{det}(\vec{v} \mid \vec{w})|$ and how does $\operatorname{det}(\vec{v} \mid \vec{w})$ depend on $\alpha=\measuredangle(\vec{v}, \vec{w})$?
Use your answer to find the area of the following region :

