Problem set - Week 8

Extrema problems

1. Find the absolute extrema of the surface $f(x, y)=\left(4 x-x^{2}\right) \cos (y)$ on the rectangular plate $1 \leq x \leq 3,-\pi / 4 \leq y \leq \pi / 4$.

2. A flat circular plate P of radius 1 is heated (included the boundary of the plate) so that the temperature at the point $(x, y) \in P$ is

$$
T(x, y)=x^{2}+2 y^{2}-x
$$

Find the temperatures at the hottest and coldest points on the plate.
3. Find the numbers $a \leq b$ such that the integral

$$
\int_{a}^{b}\left(e^{x^{2}}-2\right) d x
$$

has its largest value.
4. Find three numbers whose sum is 9 and whose sum of squares is a minimum.
5. Among all the points on the surface $z=10-x^{2}-y^{2}$ that lie above the plane $x+2 y+3 z=0$, find the point farthest from the plane.
6. The Hessian matrix of $f(x, y)=x^{2} y^{2}$ at $(0,0)$ is the zero matrix. Determine whether the function has an extremum or not at the origin by imagining what the surface looks like.
7. In this exercise, we give a proof that the geometric mean is \leq the arithmetic mean, for any set of n non-negative real numbers, i.e.

$$
\begin{equation*}
\left(a_{1} \cdots a_{n}\right)^{1 / n} \leq \frac{a_{1}+\cdots+a_{n}}{n} . \tag{1}
\end{equation*}
$$

(a) Explain why the maximum value of $x^{2} y^{2} z^{2}$ on a sphere of radius r centered at the origin is $\left(r^{2} / 3\right)^{3}$.
(b) Deduce (1) from (a) for $n=3$.
(c) Explain how the argument can be seen to hold more generally for any $n \geq 1$.

