Problem set - Week 9

Parametrizing surfaces

1. Give two parametrizations of the cone $z=\sqrt{x^{2}+y^{2}}, 0 \leq z \leq r$;
(a) using cylindrical coordinates,
(b) using spherical coordinates.
2. Parametrize the cap cut from the sphere $x^{2}+y^{2}+z^{2}=9$ by the cone $z=$ $\sqrt{x^{2}+y^{2}}$.
3. Parametrize the surface cut from the parabolic cylinder $z=4-y^{2}$ by the planes $x=0, x=2$, and $z=0$.
4. Determine the plane tangent to the hemisphere surface

$$
\vec{r}(\phi, \theta)=\left(\begin{array}{c}
4 \sin \phi \cos \theta \\
4 \sin \phi \sin \theta \\
4 \cos \phi
\end{array}\right)
$$

for $0 \leq \phi \leq \pi / 2,0 \leq \theta \leq 2 \pi$ at the point $(\sqrt{2}, \sqrt{2}, 2 \sqrt{3})$.
5. One obtains a torus of revolution by rotating a circle C with center $(R, 0,0)$ and radius $r<R$ in the $x z$-plane about the z-axis. Show that a parametrization of this torus is given by

$$
\vec{r}(u, v)=\left(\begin{array}{c}
(R+r \cos u) \cos v \\
(R+r \cos u) \sin v \\
r \sin u
\end{array}\right)
$$

with angles $0 \leq u \leq 2 \pi$ and $0 \leq v \leq 2 \pi$.

