Solutions – Week 11

Surface areas, surface integrals and computing the flux through a surface

1. Compute the surface area of the surfaces described in exercises 1 to 3 in problem set 9.

Solutions: $\sqrt{2}\pi r^2$, $8\pi\left(1-\frac{\sqrt{2}}{2}\right)$, 4π .

- 2. Integrate the given function over the given surface.
 - (a) f(x, y, z) = z x over the cone from Ex. 1, PS 9. Solution: $\frac{2\sqrt{2}}{3}\pi r^3$.
 - (b) f(x, y, z) = yz over the spherical cap from Ex. 2, PS 9. Solution: 0.
 - (c) f(x, y, z) = x + y + z over the surface of the cube cut from the first octant by the planes x = a, y = a, z = a.

 Solution: $9a^3$.
- 3. Find the outward flux of the field

$$\vec{F}(x,y) = \begin{pmatrix} 2xy \\ 2yz \\ 2xz \end{pmatrix}$$

across the surface described in Ex. 2(c).

Solution: $3a^4$.

4. Consider the surface that is the green portion of cylinder depicted below. Let \vec{n} be the normal unit vector **to the surface** pointing away from the yz-plane.

Determine the flux of the field

$$\vec{F}(x, yz) = \begin{pmatrix} -2\\2y\\z \end{pmatrix}$$

across S in direction of \vec{n} .

Solution: 4(e-2).