Solutions - Week 11

Surface areas, surface integrals and computing the flux through a SURFACE

1. Compute the surface area of the surfaces described in exercises 1 to 3 in problem set 9 .
Solutions : $\sqrt{2} \pi r^{2}, 8 \pi\left(1-\frac{\sqrt{2}}{2}\right), 4 \pi$.
2. Integrate the given function over the given surface.
(a) $f(x, y, z)=z-x$ over the cone from Ex. 1, PS 9.

Solution : $\frac{2 \sqrt{2}}{3} \pi r^{3}$.
(b) $f(x, y, z)=y z$ over the spherical cap from Ex. 2, PS 9.

Solution: 0 .
(c) $f(x, y, z)=x+y+z$ over the surface of the cube cut from the first octant by the planes $x=a, y=a, z=a$.
Solution : $9 a^{3}$.
3. Find the outward flux of the field

$$
\vec{F}(x, y)=\left(\begin{array}{l}
2 x y \\
2 y z \\
2 x z
\end{array}\right)
$$

across the surface described in Ex. 2(c).
Solution : $3 a^{4}$.
4. Consider the surface that is the green portion of cylinder depicted below. Let \vec{n} be the normal unit vector to the surface pointing away from the $y z$-plane.

Determine the flux of the field

$$
\vec{F}(x, y z)=\left(\begin{array}{c}
-2 \\
2 y \\
z
\end{array}\right)
$$

across S in direction of \vec{n}.
Solution : 4(e-2).

