Problem set - Week 12

LINEAR DIFFERENTIAL EQUATIONS

1. Find the solution of

$$
y^{\prime}=5 x-\frac{3 y}{x}
$$

with initial condition $y(1)=2$.
Solution : $y=x^{2}+x^{-3}$
2. Find the solution for
(a) $y^{\prime \prime}+4 y=0$

Solution : $y=c_{1} \cos (2 x)+c_{2} \sin (2 x)$
(b) $2 y^{\prime \prime}+7 y^{\prime}=4 y$

Solution : $y=c_{1} e^{x / 2}+c_{2} e^{-4 x}$
(c) $y^{\prime \prime}+2 y^{\prime}+y=0$

Solution : $y=c_{1} e^{-x}+c_{2} x e^{-x}$
(d) $y^{\prime \prime \prime}-y^{\prime \prime}-9 y^{\prime}+9 y=0$

Solution : $y=c_{1} e^{-3 x}+c_{2} e^{3 x}+c_{3} e^{x}$
3. Find the solution for $y^{\prime \prime}=x+y$.

Solution : $y=c_{1} e^{x}+c_{2} e^{-x}-x$
4. The goal of this exercise is to prove that any initial value problem for the simultaneous system of differential equations

$$
\left|\begin{array}{l}
d x / d t=y+x\left(1-x^{2}-y^{2}\right) \\
d y / d t=-x+y\left(1-x^{2}-y^{2}\right)
\end{array}\right|
$$

has a uniquely determined solution $(x(t), y(t))$ for all $t \in \mathbb{R}$.
(a) The system above probably has a simpler form if expressed in polar coordinates. Set $x=r \cos \theta, y=r \sin \theta$ and rewrite the system as

$$
\left|\begin{array}{l}
d r / d t=\ldots \\
d \theta / d t=\ldots
\end{array}\right|
$$

Solution :

$$
\left|\begin{array}{ccc}
d r / d t & = & r\left(1-r^{2}\right) \\
d \theta / d t & = & -1
\end{array}\right|
$$

(b) Solve the system you found in (a).

Solution : $(r(t), \theta(t))=\left(\frac{c_{1} e^{t}}{\sqrt{1+c_{1}^{2} e^{2 t}}},-t+c_{2}\right)$
(c) Check that if the initial condition on the system is $(x(0), y(0))=(0,0)$, the unique solution is $(x(t), y(t))=(0,0)$ for all $t \in \mathbb{R}$.
Solution : Clear, since $d x / d t=d y / d t=0$.
(d) Suppose the initial condition is $(x(0), y(0)) \neq(0,0)$. Find the solution $(x(t), y(t))$ of the initial value problem.
Solution : Set $(x(0), y(0))=:\left(x_{0}, y_{0}\right)=\left(r_{0} \cos \theta_{0}, r_{0} \sin \theta_{0}\right)$. Then $c_{1}=$ $\frac{r_{0}}{\sqrt{1-r_{0}^{2}}}, c_{2}=\theta_{0}$. Then $(x(t), y(t))=(r(t) \cos (\theta(t)), r(t) \sin (\theta(t)))$.
(e) Observe that the solution you determined in (d) is uniquely determined and exists for all $t \in \mathbb{R}$.

