Solutions - Week 3

Matrix multiplication, inverses \& calculus warm-up

1. Let $A=\left(\begin{array}{cc}3 & -1 \\ -5 & 2\end{array}\right), B=\left(\begin{array}{cc}-4 & 7 \\ 3 & -5\end{array}\right)$.
(a) Compute $5 A-B, A^{2}, A^{-1}, B^{-1}$.

Solutions: $\left(\begin{array}{cc}19 & -12 \\ -28 & 15\end{array}\right),\left(\begin{array}{cc}14 & -5 \\ -25 & 9\end{array}\right),\left(\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right),\left(\begin{array}{ll}5 & 7 \\ 3 & 4\end{array}\right)$.
(b) Show that $(A B)^{-1}=B^{-1} A^{-1}$.

Solution : (To be) Discussed in class.
(c) Check that $A^{2}-5 A+I=0$. Using this equation, find a formula for A^{-1} in terms of A.

Solution : $A^{-1}=5 I-A$.
2. Find the matrix X such that $\left(\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right) X=\left(\begin{array}{lll}28 & 35 & 42 \\ 42 & 53 & 64\end{array}\right)$.

Solution : $X=\left(\begin{array}{lll}0 & 1 & 2 \\ 7 & 8 & 9\end{array}\right)$.
3. Compute the first derivative of
(a) $x^{3} e^{-x^{3}}-x-3$,
(b) $\frac{\log \left(\sin ^{2}(x)\right)}{\cos (x)}$,
(c) $\arctan (\sqrt{x})$.

Solutions :

(a) $3 x^{2} e^{-x^{3}}\left(1-x^{3}\right)-1$,
(b) $\frac{2}{\sin x}+\frac{\sin x}{\cos ^{2}(x)} \log \sin ^{2}(x)$,
(c) $\frac{1}{1+x}$.

Compute the second derivative of
(d) $\log (\log (x))$.

Solution : $\frac{-1}{x^{2} \log (x)}\left(1+\frac{1}{\log x}\right)$.
4. Find the equation of the line that is normal to the curve $y=\left(x^{4}-1\right)^{3} \log (x+1)$ at the origin.

Solution : $y=x$.
5. You are in charge of designing a roller coaster ride. This simple ride is completely described, as viewed from the side, by the following figure.

You are given the set of points $\left(a_{0}, b_{0}\right),\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ and you need to connect these in a reasonably smooth way. A method often used is such design problems if that of cubic splines; you want to find polynomials $f_{k}(t)$ of degree at most 3 , to define the shape of the ride between $\left(a_{k-1}, b_{k-1}\right)$ and $\left(a_{k}, b_{k}\right)$ by requiring $f_{k}\left(a_{k-1}\right)=b_{k-1}$ and $f_{k}\left(a_{k}\right)=b_{k}$ as well as $f_{k}^{\prime}\left(a_{k}\right)=f_{k+1}^{\prime}\left(a_{k}\right), f_{k}^{\prime \prime}\left(a_{k}\right)=f_{k+1}^{\prime \prime}\left(a_{k}\right)$. Explain the practical significance of these conditions. For the convenience of the riders, it is also required that $f_{1}^{\prime}\left(a_{0}\right)=f_{n}^{\prime}\left(a_{n}\right)=0$. Why ?
Show that satisfying all these conditions amounts to solving a linear system !
Solution : (To be) Discussed in class.
6. Sketch the curve $y=x^{2}(x-3)^{2}$.

Solution : (To be) Discussed in class.
7. Let x, y be non-negative integers such that $x+y=12$. What is the the maximal value of $x^{2} y$?

Solution : 256.
8. Compute the following integrals
(a) $\int \tan (x) d x$,
(b) $\int \frac{x d x}{x^{4}+2 x^{2}+2}$,
(c) $\int \sin ^{2}(x) d x$.

Solutions :

(a) $-\log |\cos (x)|+c$,
(b) $\frac{1}{2} \arctan \left(x^{2}+1\right)+c$,
(c) $\frac{1}{2} x-\frac{1}{4} \sin (2 x)+c$.

