Solutions – Week 3

MATRIX MULTIPLICATION, INVERSES & CALCULUS WARM-UP

1. Let
$$A = \begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} -4 & 7 \\ 3 & -5 \end{pmatrix}$.

(a) Compute 5A - B, A^2 , A^{-1} , B^{-1} .

Solutions: $\begin{pmatrix} 19 & -12 \\ -28 & 15 \end{pmatrix}$, $\begin{pmatrix} 14 & -5 \\ -25 & 9 \end{pmatrix}$, $\begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$, $\begin{pmatrix} 5 & 7 \\ 3 & 4 \end{pmatrix}$.

(b) Show that $(AB)^{-1} = B^{-1}A^{-1}$.

Solution: (To be) Discussed in class.

(c) Check that $A^2 - 5A + I = 0$. Using this equation, find a formula for A^{-1} in terms of A.

Solution : $A^{-1} = 5I - A$.

2. Find the matrix X such that $\begin{pmatrix} 3 & 4 \\ 5 & 6 \end{pmatrix} X = \begin{pmatrix} 28 & 35 & 42 \\ 42 & 53 & 64 \end{pmatrix}$.

Solution: $X = \begin{pmatrix} 0 & 1 & 2 \\ 7 & 8 & 9 \end{pmatrix}$.

3. Compute the first derivative of

(a)
$$x^3 e^{-x^3} - x - 3$$
, (b) $\frac{\log(\sin^2(x))}{\cos(x)}$, (c) $\arctan(\sqrt{x})$.

Solutions:

(a)
$$3x^2e^{-x^3}(1-x^3)-1$$
, (b) $\frac{2}{\sin x} + \frac{\sin x}{\cos^2(x)}\log\sin^2(x)$, (c) $\frac{1}{1+x}$.

Compute the second derivative of

(d)
$$\log(\log(x))$$
.

Solution: $\frac{-1}{x^2 \log(x)} \left(1 + \frac{1}{\log x} \right)$.

4. Find the equation of the line that is normal to the curve $y = (x^4 - 1)^3 \log(x + 1)$ at the origin.

Solution: y = x.

5. You are in charge of designing a roller coaster ride. This simple ride is completely described, as viewed from the side, by the following figure.

You are given the set of points $(a_0, b_0), (a_1, b_1), \ldots, (a_n, b_n)$ and you need to connect these in a reasonably smooth way. A method often used is such design problems if that of cubic splines; you want to find polynomials $f_k(t)$ of degree at most 3, to define the shape of the ride between (a_{k-1}, b_{k-1}) and (a_k, b_k) by requiring $f_k(a_{k-1}) = b_{k-1}$ and $f_k(a_k) = b_k$ as well as $f'_k(a_k) = f'_{k+1}(a_k), f''_k(a_k) = f''_{k+1}(a_k)$. Explain the practical significance of these conditions. For the convenience of the riders, it is also required that $f'_1(a_0) = f'_n(a_n) = 0$. Why?

Show that satisfying all these conditions amounts to solving a linear system!

Solution : (To be) Discussed in class.

6. Sketch the curve $y = x^2(x-3)^2$.

Solution: (To be) Discussed in class.

7. Let x, y be non-negative integers such that x + y = 12. What is the the maximal value of x^2y ?

Solution: 256.

8. Compute the following integrals

(a)
$$\int \tan(x) dx$$
, (b) $\int \frac{x dx}{x^4 + 2x^2 + 2}$, (c) $\int \sin^2(x) dx$.

Solutions:

(a)
$$-\log|\cos(x)| + c$$
, (b) $\frac{1}{2}\arctan(x^2+1) + c$, (c) $\frac{1}{2}x - \frac{1}{4}\sin(2x) + c$.

2