Mathematics

Fall 2014

D-ARCH

Solutions – Week 4

More integration problems, path integrals

1. Compute the following integrals.

(a)
$$\int x \log x \, dx$$
 (b) $\int \frac{dx}{x^2 \sqrt{x^2 + 1}}$ (c) $\int \frac{dx}{x^2 (x^2 - 1)}$
Solutions : (a) $\frac{1}{2}x^2 \left(\ln x - \frac{1}{2} \right) + c$, (b) $-x^{-1} \sqrt{x^2 + 1} + c$, (c) $\frac{1}{x} + \ln \sqrt{\frac{x - 1}{x + 1}} + c$.

2. Sketch the region enclosed by the line x = 4, the curve $y = \sqrt{x}$ and the x-axis. Compute its area. Do the same for the region in the first quadrant that is bounded by $y = x^3$ and y = 4x.

Solutions : 16/3 and 4.

3. Compute the following integrals.

(a)
$$\int_0^\infty \frac{e^{-\sqrt{x}}}{\sqrt{x}}$$
 (b) $\int_e^\infty \frac{dx}{x \log x}$ (c) $\int_0^3 \frac{x \, dx}{(x^2 - 1)^{2/3}}$

Solutions : (a) 2 ; (b) ∞ ; (c) 9/2.

- 4. For which $x \in (0, 3\pi/2)$ is $f(x) = \int_x^{2x} \frac{\sin t}{t} dt$ a local maximum ? Solution : $\pi/3$.
- 5. Compute the length of the curve defined by $y = \sqrt{x^3}$ on the interval $0 \le x \le 28$. Solution : 4088/27.
- 6. Compute the line integral of $x + y^2$ over the segment of the circle $x^2 + y^2 = 4$ going from (2,0) to (0,2). Then compute again this line integral but going this time from (0,2) to (2,0). Finally compute it over a path of your choice going from (2,0) to (0,2).

Solutions : Both times $2(2 + \pi)$. In fact, the value of a path integral $\int_C f ds$ does not depend on the orientation or on the parametrization of the path C.