## Solutions - Week 4

## More integration problems, path integrals

1. Compute the following integrals.
(a) $\int x \log x d x$
(b) $\int \frac{d x}{x^{2} \sqrt{x^{2}+1}}$
(c) $\int \frac{d x}{x^{2}\left(x^{2}-1\right)}$

Solutions : (a) $\frac{1}{2} x^{2}\left(\ln x-\frac{1}{2}\right)+c$, (b) $-x^{-1} \sqrt{x^{2}+1}+c$, (c) $\frac{1}{x}+\ln \sqrt{\frac{x-1}{x+1}}+c$.
2. Sketch the region enclosed by the line $x=4$, the curve $y=\sqrt{x}$ and the $x$-axis. Compute its area. Do the same for the region in the first quadrant that is bounded by $y=x^{3}$ and $y=4 x$.
Solutions : $16 / 3$ and 4 .
3. Compute the following integrals.
(a) $\int_{0}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}}$
(b) $\int_{e}^{\infty} \frac{d x}{x \log x}$
(c) $\int_{0}^{3} \frac{x d x}{\left(x^{2}-1\right)^{2 / 3}}$

Solutions : (a) $2 ;$ (b) $\infty$; (c) $9 / 2$.
4. For which $x \in(0,3 \pi / 2)$ is $f(x)=\int_{x}^{2 x} \frac{\sin t}{t} d t$ a local maximum ?

Solution : $\pi / 3$.
5. Compute the length of the curve defined by $y=\sqrt{x^{3}}$ on the interval $0 \leqslant x \leqslant 28$.

Solution : 4088/27.
6. Compute the line integral of $x+y^{2}$ over the segment of the circle $x^{2}+y^{2}=4$ going from $(2,0)$ to $(0,2)$. Then compute again this line integral but going this time from $(0,2)$ to $(2,0)$. Finally compute it over a path of your choice going from $(2,0)$ to $(0,2)$.
Solutions : Both times $2(2+\pi)$. In fact, the value of a path integral $\int_{C} f d s$ does not depend on the orientation or on the parametrization of the path $C$.

