D-ARCH

Mathematics

Fall 2014

Problem set – Week 7

EIGENVALUES AND EIGENVECTORS CHANGING BASES

- 1. For which values of k does $\begin{pmatrix} -1 & k \\ 4 & 3 \end{pmatrix}$ have 5 as an eigenvalue ? Solution : k = 3.
- 2. Check that the characteristic polynomial of a 2×2 -matrix A is

$$p_A(\lambda) = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A).$$

Let λ_1 and λ_2 be eigenvalues of A. What is the relation between tr(A), det(A), λ_1 and λ_2 ?

If you are stuck, consider explicitly $A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$. Solution : $\lambda_1 + \lambda_2 = \operatorname{tr}(A), \ \lambda_1 \lambda_2 = \operatorname{det}(A)$.

3. Determine all eigenvalues and eigenvectors of $\begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \end{pmatrix}$.

Solution :
$$\lambda_1 = \sqrt{3}, \ \lambda_2 = -\sqrt{3}, \ \lambda_3 = 3, \ v_1 = \begin{pmatrix} -1\\ 2+\sqrt{3}\\ -1-\sqrt{3} \end{pmatrix}, \ v_2 = \begin{pmatrix} -1\\ 2-\sqrt{3}\\ -1+\sqrt{3} \end{pmatrix}, \ v_3 = \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}.$$

4. A reflection about a line in the plane passing through the origin is expressed via a matrix of the form $\begin{pmatrix} a & b \\ b & -a \end{pmatrix}$ with $a^2 + b^2 = 1$. Conversely any such matrix represents a reflection about a line. Express the matrix $A = \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}$ as a reflection combined with a scaling.

Determine geometrically, i.e. without computing the characteristic equation, all the eigenvalues of A, and give two linearly independent eigenvectors.

Solution : $\lambda = \pm 5$. Take a vector \vec{v}_1 on the line and vector \vec{v}_2 orthogonal to \vec{v}_1 .

5. Show that similar matrices have the same eigenvalues. Show that transpose matrices have the same eigenvalues.

Solution : $S^{-1}AS\vec{v} = \lambda\vec{v} \Leftrightarrow AS\vec{v} = \lambda S\vec{v}$, $\det(A - \lambda I) = \det({}^t(A - \lambda I)) = \det({}^t(A - \lambda I))$.

- 6. Let A be a symmetric $n \times n$ matrix. Prove the following statements.
 - (a) $A\vec{v} \cdot \vec{w} = \vec{v} \cdot A\vec{w}$. Solution : Compare row by row.
 - (b) If \vec{v} and \vec{w} are two eigenvectors of A with distinct eigenvalues, then \vec{w} is orthogonal to \vec{v} .

Solution : $A\vec{v}\cdot\vec{w} = \lambda_1\vec{v}\cdot\vec{w} = \vec{v}\cdot\lambda_2\vec{w} = \lambda_2\vec{v}\cdot\vec{w} \Rightarrow (\lambda_1 - \lambda_2)\vec{v}\cdot\vec{w} = 0 \Rightarrow \vec{v}\cdot\vec{w} = 0.$

(c) Find a basis of \mathbb{R}^3 that consists of eigenvectors for

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 2 \\ 0 & 2 & 1 \end{pmatrix}.$$

Solution : $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 1 + \sqrt{33} \\ 8 \\ 1 + \sqrt{33} \end{pmatrix}$, $\begin{pmatrix} 1 - \sqrt{33} \\ 8 \\ 1 - \sqrt{33} \end{pmatrix}$.

7. For the following data, find the matrix B of the linear transformation $T\vec{v} = A\vec{v}$ with respect to the basis \mathcal{B} . For practice, solve each problem in three ways ; using the formula $B = S^{-1}AS$, using a commutative diagram, constructing B column by column.

(a)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}, \mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\}$$

Solution : $B = \begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}$.
(b) $A = \begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix}, \mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\}$
Solution : $B = \begin{pmatrix} 5 & 0 \\ 0 & -5 \end{pmatrix}$.