Problem set - Week 7

Eigenvalues and eigenvectors
 Changing bases

1. For which values of k does $\left(\begin{array}{cc}-1 & k \\ 4 & 3\end{array}\right)$ have 5 as an eigenvalue?

Solution : $k=3$.
2. Check that the characteristic polynomial of a 2×2-matrix A is

$$
p_{A}(\lambda)=\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A) .
$$

Let λ_{1} and λ_{2} be eigenvalues of A. What is the relation between $\operatorname{tr}(A), \operatorname{det}(A)$, λ_{1} and λ_{2} ?
If you are stuck, consider explicitly $A=\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)$.
Solution : $\lambda_{1}+\lambda_{2}=\operatorname{tr}(A), \lambda_{1} \lambda_{2}=\operatorname{det}(A)$.
3. Determine all eigenvalues and eigenvectors of $\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1\end{array}\right)$.

Solution : $\lambda_{1}=\sqrt{3}, \lambda_{2}=-\sqrt{3}, \lambda_{3}=3, v_{1}=\left(\begin{array}{c}-1 \\ 2+\sqrt{3} \\ -1-\sqrt{3}\end{array}\right), v_{2}=\left(\begin{array}{c}-1 \\ 2-\sqrt{3} \\ -1+\sqrt{3}\end{array}\right)$, $v_{3}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
4. A reflection about a line in the plane passing through the origin is expressed via a matrix of the form $\left(\begin{array}{cc}a & b \\ b & -a\end{array}\right)$ with $a^{2}+b^{2}=1$. Conversely any such matrix represents a reflection about a line. Express the matrix $A=\left(\begin{array}{cc}3 & 4 \\ 4 & -3\end{array}\right)$ as a reflection combined with a scaling.
Determine geometrically, i.e. without computing the characteristic equation, all the eigenvalues of A, and give two linearly independent eigenvectors.

Solution : $\lambda= \pm 5$. Take a vector \vec{v}_{1} on the line and vector \vec{v}_{2} orthogonal to \vec{v}_{1}.
5. Show that similar matrices have the same eigenvalues. Show that transpose matrices have the same eigenvalues.
Solution : $S^{-1} A S \vec{v}=\lambda \vec{v} \Leftrightarrow A S \vec{v}=\lambda S \vec{v}, \operatorname{det}(A-\lambda I)=\operatorname{det}\left({ }^{t}(A-\lambda I)\right)=$ $\operatorname{det}\left({ }^{t} A-\lambda I\right)$.
6. Let A be a symmetric $n \times n$ matrix. Prove the following statements.
(a) $A \vec{v} \cdot \vec{w}=\vec{v} \cdot A \vec{w}$.

Solution : Compare row by row.
(b) If \vec{v} and \vec{w} are two eigenvectors of A with distinct eigenvalues, then \vec{w} is orthogonal to \vec{v}.
Solution : $A \vec{v} \cdot \vec{w}=\lambda_{1} \vec{v} \cdot \vec{w}=\vec{v} \cdot \lambda_{2} \vec{w}=\lambda_{2} \vec{v} \cdot \vec{w} \Rightarrow\left(\lambda_{1}-\lambda_{2}\right) \vec{v} \cdot \vec{w}=0 \Rightarrow$ $\vec{v} \cdot \vec{w}=0$.
(c) Find a basis of \mathbb{R}^{3} that consists of eigenvectors for

$$
\begin{array}{r}
A=\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 0 & 2 \\
0 & 2 & 1
\end{array}\right) . \\
\text { Solution : }\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{c}
1+\sqrt{3} 3 \\
8 \\
1+\sqrt{3} 3
\end{array}\right),\left(\begin{array}{c}
1-\sqrt{3} 3 \\
8 \\
1-\sqrt{3} 3
\end{array}\right) .
\end{array}
$$

7. For the following data, find the matrix B of the linear transformation $T \vec{v}=A \vec{v}$ with respect to the basis \mathcal{B}. For practice, solve each problem in three ways ; using the formula $B=S^{-1} A S$, using a commutative diagram, constructing B column by column.
(a) $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right), \mathcal{B}=\left\{\binom{1}{3},\binom{-2}{1}\right\}$

Solution : $B=\left(\begin{array}{ll}3 & 0 \\ 0 & 0\end{array}\right)$.
(b) $A=\left(\begin{array}{cc}-3 & 4 \\ 4 & 3\end{array}\right), \mathcal{B}=\left\{\binom{1}{2},\binom{-2}{1}\right\}$

Solution : $B=\left(\begin{array}{cc}5 & 0 \\ 0 & -5\end{array}\right)$.

