Lösung 6

- 1. Zwei Folgen $(a_n)_n$ und $(b_n)_n$ heissen asymptotisch gleich, wenn $\lim_{n\to\infty} \frac{a_n}{b_n} = 1$ gilt. Welche der Folgen sind asymptotisch gleich?
 - a) $a_n = \sum_{k=0}^n k$, $b_n = n^3$, $c_n = n^2$, $d_n = \frac{n^2}{2}$ Lösung:

Zuerst machen wir eine allgemeine Beobachtung: Wenn $(a_n)_n$ asymptotisch gleich zu $(b_n)_n$ ist und $(b_n)_n$ asymptotisch gleich zu $(c_n)_n$ ist, dann ist $(a_n)_n$ asymptotisch gleich zu $(c_n)_n$. Also fallen die Folgen, die asymptotisch gleich zueinander sind, in disjunkte Teilmengen. Es gilt $a_n = \frac{n(n+1)}{2}$ (Vorlesung) und

$$\lim_{n \to \infty} \frac{a_n}{d_n} = \lim_{n \to \infty} \frac{n(n+1)}{n^2} = 1.$$

Grenzwerte dieser Art wurden in Serie 5, Aufgabe 1, berechnet. Also sind a_n und d_n asymptotisch gleich. Man sieht ebenso leicht, dass b_n und c_n nicht asymptotisch gleich zu einer der anderen Folgen ist.

b) $a_n = \frac{n^2 + 3n + 1}{2n + 5}$, $b_n = \frac{n^3 + 5n + 1}{2n^2 + 1}$, $c_n = \frac{n^7}{2n^5}$, $d_n = \frac{n^4}{2n^3}$, $e_n = \frac{1}{2}n^2$ Lösung:

Mit der Methode von Serie 5, Aufgabe 1, finden wir, dass a_n asymptotisch gleich zu $\frac{n^2}{2n} = \frac{n}{2}$ und b_n asymptotisch gleich zu $\frac{n^3}{2n^2} = \frac{n}{2}$ ist. Es folgt, dass a_n , b_n und d_n asymptotisch gleich zueinander sind. Weiter ist c_n asymptotisch gleich zu e_n .

c) $a_n = -\sqrt{n^3} + \sqrt{(n+1)^3}$, $b_n = n^{3/2}$, $c_n = \frac{2}{3}n^{-1/2}$, $d_n = \sqrt{n^3} - \sqrt{n^3 - 2}$ Lösung:

Wir schreiben a_n als

$$a_n = -\sqrt{n^3} + \sqrt{(n+1)^3} = \frac{(n+1)^3 - n^3}{\sqrt{(n+1)^3} + \sqrt{n^3}} = \frac{3n^2 + 3n + 1}{\sqrt{(n+1)^3} + \sqrt{n^3}}$$
$$= \frac{3n^2 + 3n + 1}{3n^2} \frac{3n^2}{\sqrt{(n+1)^3} + \sqrt{n^3}}.$$

Sei $a_n'=\frac{3n^2}{\sqrt{(n+1)^3}+\sqrt{n^3}}$. Wegen $\lim_{n\to\infty}\frac{3n^2+3n+1}{3n^2}=1$ ist $(a_n)_n$ asymptotisch gleich zu $(a_n')_n$. Nun gilt

$$\begin{split} \lim_{n \to \infty} \frac{\frac{3}{2} n^{1/2}}{a_n'} &= \lim_{n \to \infty} \frac{\sqrt{(n+1)^3} + \sqrt{n^3}}{2n^{3/2}} \\ &= \lim_{n \to \infty} \frac{(n+1)^{3/2}}{2n^{3/2}} + \frac{1}{2} = \frac{1}{2} \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{3/2} + \frac{1}{2} = 1 \;. \end{split}$$

Wir haben gezeigt, dass $(a'_n)_n$, also auch $(a_n)_n$, asymptotisch gleich zu $(\frac{3}{2}n^{1/2})_n$ ist. Bei $(d_n)_n$ gehen wir ähnlich wie bei $(a_n)_n$ vor. Wir schreiben d_n als

$$d_n = \sqrt{n^3} - \sqrt{n^3 - 2} = \frac{n^3 - (n^3 - 2)}{\sqrt{n^3} + \sqrt{n^3 - 2}} = \frac{2}{\sqrt{n^3} + \sqrt{n^3 - 2}}.$$

Es folgt

$$\begin{split} \lim_{n \to \infty} \frac{n^{-3/2}}{d_n} &= \lim_{n \to \infty} \frac{\sqrt{n^3 + \sqrt{n^3 - 2}}}{2n^{3/2}} = \frac{1}{2} \lim_{n \to \infty} \left(1 + \sqrt{\frac{n^3 - 2}{n^3}} \right) \\ &= \frac{1}{2} \left(1 + \sqrt{\lim_{n \to \infty} (1 - 2n^{-3})} \right) = 1 \; . \end{split}$$

Also ist $(d_n)_n$ asymptotisch gleich zu $(n^{-3/2})_n$. Es folgt, dass $(a_n)_n$ nicht asymptotisch gleich ist zu $(b_n)_n$, $(c_n)_n$ und $(d_n)_n$. Es ist einfach zu sehen, dass $(b_n)_n$ und $(c_n)_n$ ebenfalls nicht asymptotisch gleich sind. Resultat: Keine der Folgen ist asymptotisch gleich zu einer der anderen.

Zeige

2. a) Die Folge $a_n = \left(1 + \frac{1}{n}\right)^n$ ist monoton wachsend. $L\ddot{o}sung$: Da $a_n \geq 1$ für alle $n \in \mathbb{N}$, können wir $a_n \geq a_{n-1}$ umformulieren zu $\frac{a_n}{a_{n-1}} \geq 1$. Wir rechnen für $n \geq 2$

$$\frac{\left(1+\frac{1}{n}\right)^n}{\left(1+\frac{1}{n-1}\right)^{n-1}} = \frac{\left(\frac{n+1}{n}\right)^n}{\left(\frac{n}{n-1}\right)^{n-1}} = \frac{n+1}{n} \cdot \frac{(n+1)^{n-1}}{n^{n-1}} \cdot \frac{(n-1)^{n-1}}{n^{n-1}}$$

$$= \frac{n+1}{n} \cdot \frac{(n^2-1)^{n-1}}{(n^2)^{n-1}} = \frac{n+1}{n} \cdot \left(1-\frac{1}{n^2}\right)^{n-1}$$

$$\geq \frac{n+1}{n} \left(1-(n-1)\cdot\frac{1}{n^2}\right) = \frac{n+1}{n} \cdot \frac{n^2-n+1}{n^2} ,$$

wobei wir die Bernoulli-Ungleichung $(1+x)^n \ge 1+nx$ für x>-1 und $n\in\mathbb{N}$ angewandt haben. Wegen $(n+1)(n^2-n+1)=n^3+1$ ergibt sich somit

$$\frac{a_n}{a_{n-1}} \ge \frac{n^3 + 1}{n^3} > 1,$$

wie gewünscht.

b) Die Folge $b_n = \left(1 + \frac{1}{n}\right)^{n+1}$ ist monoton fallend. *Lösung:* Wir verfahren wie in **a** und zeigen, dass $\frac{b_{n-1}}{b_n} \ge 1$ ist. Einsetzen und Umformen ergibt

$$\frac{b_{n-1}}{b_n} = \frac{\left(1 + \frac{1}{n-1}\right)^n}{\left(1 + \frac{1}{n}\right)^{n+1}} = \frac{\left(\frac{n}{n-1}\right)^n}{\left(\frac{n+1}{n}\right)^{n+1}} = \frac{n^n \cdot n^n}{(n-1)^n (n+1)^n} \cdot \frac{n}{n+1}$$

$$= \left(\frac{n^2}{n^2 - 1}\right)^n \cdot \frac{n}{n+1} = \left(\frac{n^2 - 1 + 1}{n^2 - 1}\right)^n \cdot \frac{n}{n+1}$$

$$= \left(1 + \frac{1}{n^2 - 1}\right)^n \cdot \frac{n}{n+1}$$

$$\ge \left(1 + n \cdot \frac{1}{n^2 - 1}\right) \cdot \frac{n}{n+1} = \frac{n^2 + n - 1}{n^2 - 1} \cdot \frac{n}{n+1}$$

$$= \frac{n^3 + n^2 - n}{n^3 + n^2 - n - 1} > 1,$$

wobei wir wiederum die Bernoulli-Ungleichung verwendet haben. Daher ist $b_{n-1} > b_n$, also ist die Folge monoton fallend.

c) Es gilt $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$.

Lösung. Beachte, dass $b_n = (1 + \frac{1}{n}) a_n$, also $a_n \leq b_n$, und insbesondere $a_1 \leq a_n \leq b_1$ für alle n. Die Folge a_n ist monoton steigend und beschränkt, daher ist sie konvergent. Weiter ist $1 + \frac{1}{n} \to 1$. Daher ist auch

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right) \cdot \lim_{n \to \infty} a_n = 1 \cdot \lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n,$$

wie behauptet.

Bemerkung. Der Grenzwert $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 2.7182818...$ heisst Eulersche Zahl.

http://de.wikipedia.org/wiki/Eulersche_Zahl

3. Sei
$$p_n = \prod_{k=1}^n \frac{2k}{2k-1}$$
. Zeige

a) $a_n = \frac{p_n}{\sqrt{n}}$ ist monoton fallend. *Lösung:*

Da $a_n > 0$ für jedes n ist, ist $a_{n+1} \le a_n$ äquivalent zu $\left(\frac{a_{n+1}}{a_n}\right)^2 \le 1$. Wir berechnen diesen Ausdruck

$$\left(\frac{a_{n+1}}{a_n}\right)^2 = \frac{n}{n+1} \left(\frac{2n+2}{2n+1}\right)^2 = \frac{4n^2+4n}{4n^2+4n+1} < 1.$$

b) $b_n = \frac{p_n}{\sqrt{n+1}}$ ist monoton wachsend. *Lösung:*

Da $b_n>0$ für jedes n ist, ist $b_{n+1}\geq b_n$ äquivalent zu $\left(\frac{b_{n+1}}{b_n}\right)^2\geq 1$. Wir berechnen diesen Ausdruck

$$\left(\frac{b_{n+1}}{b_n}\right)^2 = \frac{n+1}{n+2} \left(\frac{2n+2}{2n+1}\right)^2 = \frac{4n^3 + 12n^2 + 12n + 4}{4n^3 + 12n^2 + 9n + 2} > 1.$$

c) Es gibt $p \in [\sqrt{2}, 2]$, so dass $(\sqrt{n}p)_n$ asymptotisch gleich ist zu $(p_n)_n$.

Bemerkung: Man kann zeigen, dass $p = \sqrt{\pi}$. Lösung:

Aus \mathbf{a} und \mathbf{b} erhalten wir für alle n

$$\sqrt{2} = b_1 < b_n < a_n < a_1 = 2$$
.

Also besitzt die monoton fallende und beschränkte Folge $(a_n)_n$ einen Grenzwert p mit $\sqrt{2} \le p \le 2$. Dann ist $(\sqrt{n}p)_n$ asymptotisch gleich zu $(p_n)_n$, denn

$$\lim_{n \to \infty} \frac{p_n}{\sqrt{np}} = \lim_{n \to \infty} \frac{a_n}{p} = \frac{1}{p} \lim_{n \to \infty} a_n = 1.$$