Mathematical Finance Exercise Sheet 4

Please hand in until Friday, 6.11.2015, 12:00.

Exercise 4-1

Consider a financial market with a constant interest rate r and a risky asset whose discounted price process follows a Merton-type jump diffusion, that is,

$$
\frac{d S_{t}}{S_{t-}}=(\mu-r) d t+\sigma d W_{t}+d J_{t}, \quad S_{0}>0
$$

where J is a compensated compound Poisson process with jumps $\Delta J \geq 0$ and independent of W, and ν, σ are constant. More precisely,

$$
J_{t}=\sum_{k=1}^{N_{t}}\left(Y_{k}-1\right),
$$

where N is a Poisson process with intensity λ and $Y_{k} \geq 1$ are integrable i.i.d. random variables with $m:=E\left[Y_{1}\right]$. The filtration is $\mathbb{F}=\mathbb{F}^{W, J}$. Show that the process S can be expressed as

$$
S_{t}=S_{0} \exp \left(\tilde{X}_{t}\right)
$$

where \tilde{X} is a Lévy process.

Exercise 4-2

Consider a stock price model based on a 2-dimensional Brownian motion (W, W^{\prime}) in its own filtration, where 1-dimensional stock price follows

$$
d S_{t}=\mu_{t} d t+\sigma_{t} d W_{t}
$$

and $\mu_{t}=\mu\left(t, S_{t}, Y_{t}\right)$ and $\sigma_{t}=\sigma\left(t, S_{t}, Y_{t}\right)$ are determined by continuous functions depending on the diffusion Y which follows

$$
\begin{aligned}
d Y_{t} & =b\left(t, Y_{t}\right) d t+a\left(t, Y_{t}\right) d B_{t}, \\
Y_{0} & =y_{0} .
\end{aligned}
$$

Here B is a correlated Brownian motion: $B_{t}=\rho W_{t}+\sqrt{1-\rho^{2}} W_{t}^{\prime}$ for some constant $\rho \in(0,1)$. We assume that the function $\frac{\mu}{\sigma}$ is uniformly bounded. The process Y is often called stochastic factor in this context.
a) Show that $d\langle B, W\rangle_{t}=\rho d t$ and $d\langle S, Y\rangle_{t}=a\left(t, Y_{t}\right) \sigma\left(t, S_{t}, Y_{t}\right) \rho d t$.
b) What is the general form of the density process of an ELMM Q for S ?
c) Find the dynamics of S and Y under such a measure; that is give stochastic differential equations for these processes involving only Brownian motions under Q, not under P.

Exercise 4-3

Let $\left(\Omega, \mathcal{F},(\mathcal{F})_{t \in[0, T]}, P\right)$ be a filtered probability space with $\mathcal{F}_{0} P$-trivial and $(\mathcal{F})_{t \in[0, T]}$ satisfying the usual conditions, and let $S=\left(S_{t}^{1}, \ldots, S_{t}^{d}\right)_{t \in[0, T]}$ be an \mathbb{R}^{d}-valued semimartingale satisfying NFLVR. Denote by $L_{+}^{0}(\Omega, \mathcal{F}, P)$ the space of all random variables taking values in $[0, \infty]$, endowed with the topology of convergence in probability. For $x>0$ and $y>0$, define the sets

$$
\begin{aligned}
& \mathcal{C}(x):=\left\{X_{T} \in L_{+}^{0}(\Omega, \mathcal{F}, P): X_{T} \leq x+(H \cdot S)_{T} \text { for admissible } H\right\} \\
& \mathcal{D}(y):=y \mathcal{D}(1):=y \mathcal{D}:=y\left\{Y_{T} \in L_{+}^{0}(\Omega, \mathcal{F}, P): E\left[X_{T} Y_{T}\right] \leq 1 \forall X_{T} \in \mathcal{C}(1)\right\} .
\end{aligned}
$$

Moreover, let $U:] 0, \infty[\rightarrow \mathbb{R}$ be an increasing and concave (utility) function, and suppose that $u(x):=\sup _{X_{T} \in \mathcal{C}(x)} E\left[U\left(X_{T}\right)\right]<\infty$ for some (and hence all) $x>0$. Set $U^{+}(\mathcal{C}(x)):=\left\{U^{+}\left(X_{T}\right):\right.$ $\left.X_{T} \in \mathcal{C}(x)\right\}$.
a) Fix $x>0$. Show that $\mathcal{C}(x)$ is convex and closed in $L_{+}^{0}(\Omega, \mathcal{F}, P)$.

Hint: Use the fact that $X_{T} \in L_{+}^{0}(\Omega, \mathcal{F}, P)$ is in $\mathcal{C}(x)$ if and only if $\sup _{Y_{T} \in \mathcal{D}} E\left[X_{T} Y_{T}\right] \leq x$.
b) Fix $x>0$. Suppose that that $U^{+}(\mathcal{C}(x))$ is uniformly integrable. Show that there exists $\widehat{X} \in \mathcal{C}(x)$ such that $E[U(\widehat{X})]=u(x)$.
Hint: Part (a) and Komlos' Lemma.
c) Suppose now that there exist $a>0$ and $0<b<1$ such that $U^{+}(x) \leq a\left(1+x^{b}\right)$ for all $x>0$ and an equivalent σ-martingale measure $Q \sim P$ on \mathcal{F} for S such that $\left(\frac{d Q}{d P}\right)^{-1}$ has moments of all orders. Fix $x>0$, and show that $U^{+}(\mathcal{C}(x))$ is uniformly integrable.
Hint: By using the growth assumption on U^{+}, reduce the problem to showing that $\mathcal{C}(x)$ is bounded in L^{p} with $p>1$ small enough. Then switch from P to Q.

Exercise 4-4

Let $\left(\Omega, \mathcal{F},(\mathcal{F})_{t \in[0, T]}, P\right)$ be a filtered probability space with $\mathcal{F}_{0} P$-trivial and $(\mathcal{F})_{t \in[0, T]}$ satisfying the usual conditions and let $S=\left(S_{t}^{1}, \ldots, S_{t}^{d}\right)_{t \in[0, T]}$ be an \mathbb{R}^{d}-valued semimartingale satisfying NFLVR. Assume that there exists a unique equivalent σ-martingale measure $Q \sim P$ on \mathcal{F}_{T}, i.e., the market $(1, S)$ is complete. Let $U:] 0, \infty[\rightarrow \mathbb{R}$ be an increasing differentiable strictly concave utility function such that

$$
U^{\prime}(0):=\lim _{x \downarrow 0} U^{\prime}(x)=\infty
$$

Define the functions u, V, v and I on $] 0, \infty[$ as in the lecture and the sets $\mathcal{C}(x)$ and $\mathcal{D}(y), x, y>0$, as in the previous exercise. We assume that $u(x)<\infty$ for some (and hence all) $x \in] 0, \infty[$.
a) Fix $y>0$. Show that

$$
z \leq y \frac{d Q}{d P} P \text {-a.s. for all } z \in \mathcal{D}(y)
$$

where $\frac{d Q}{d P}$ denotes the density of Q with respect to P on \mathcal{F}. Deduce that

$$
v(y)=\inf _{z \in \mathcal{D}(y)} E[V(z)]=E\left[V\left(y \frac{d Q}{d P}\right)\right]
$$

where $E[V(z)]:=\infty$ if $V^{+}(z) \notin L^{1}(P)$.
Hint: Suppose that there is $z \in \mathcal{D}(y)$ such that $A:=\left\{z>y \frac{d Q}{d P}\right\}$ has $P[A]>0$. Set $a:=$ $Q[A]$, and use that completeness of S is equivalent to the predictable representation property of S under Q to deduce that there exists an admissible H such that $1_{A}=a+(H \cdot S)_{T}$.
b) Let $y_{0}:=\inf \{y>0: v(y)<\infty\}$. Show that the function v is in $C^{1}(] y_{0}, \infty[)$ and satisfies

$$
\left.v^{\prime}(y)=E\left[\frac{d Q}{d P} V^{\prime}\left(y \frac{d Q}{d P}\right)\right], \quad y \in\right] y_{0}, \infty[
$$

Hint: Apply the fundamental theorem of calculus to the function $y \mapsto V\left(y \frac{d Q}{d P}\right)$ and take expectations.
c) Set $x_{0}:=\lim _{y \downarrow \downarrow y_{0}}-v^{\prime}(y)$. Fix $\left.x \in\right] 0, x_{0}\left[\right.$. Let $\left.y_{x} \in\right] y_{0}, \infty[$ be the unique number such that $-v^{\prime}\left(y_{x}\right)=x$. Show that $\widehat{X}:=I\left(y_{x} \frac{d Q}{d P}\right)$ is the unique solution to the primal problem

$$
u(x)=\sup _{X \in \mathcal{C}(x)} E[U(X)]
$$

Hint: Show that $\widehat{X} \in \mathcal{C}(x)$ using part (a). Then use a Taylor expansion and the strict concavity of U in $] 0, \infty[$ to argue that we have $E[U(X)-U(\widehat{X})] \leq 0$ for all $X \in \mathcal{C}(x)$ and that the inequality is an equality if and only if $X=\widehat{X} P$-a.s..

Exercise 4-5

Let (Ω, \mathcal{F}, P) be a probability space supporting a Brownian motion $W=\left(W_{t}\right)_{t \in[0, T]}$. Denote by $\left(\mathcal{F}_{t}^{W}\right)_{t \in[0, T]}$ the natural (completed) filtration of W. Let $\sigma>0$ and $\mu, r \in \mathbb{R}$. Consider the undiscounted Black-Scholes market $\left(\widetilde{S}^{0}, \widetilde{S}^{1}\right)=\left(\widetilde{S}_{t}^{0}, \widetilde{S}_{t}^{1}\right)_{t \in[0, T]}$ given by the SDEs

$$
d \widetilde{S}_{t}^{0}=r \widetilde{S}_{t}^{0} d t, \quad \widetilde{S}_{0}^{0}=1, \quad \text { and } \quad d \widetilde{S}_{t}^{1}=\widetilde{S}_{t}^{1}\left(\mu d t+\sigma d W_{t}\right), \quad \widetilde{S}_{0}^{1}=s>0
$$

Denote by $S^{1}:=\frac{\widetilde{S}^{1}}{\widetilde{S}^{0}}$ the discounted stock price. Let $\left.U:\right] 0, \infty\left[\rightarrow \mathbb{R}\right.$ be defined by $U(x)=\frac{1}{\gamma} x^{\gamma}$, where $\gamma \in]-\infty, 1[\backslash\{0\}$.
a) Using part (a) of previous exercise show that

$$
\left.v(y)=\frac{1-\gamma}{\gamma} y^{-\frac{\gamma}{1-\gamma}} \exp \left(\frac{1}{2} \frac{\gamma}{(1-\gamma)^{2}} \frac{(\mu-r)^{2}}{\sigma^{2}} T\right), \quad y \in\right] 0, \infty[.
$$

b) Using part (c) of previous exercise show that $\widehat{X}:=x \mathcal{E}\left(\frac{1}{1-\gamma} \frac{\mu-r}{\sigma} R\right)_{T}$, where $R=\left(R_{t}\right)_{t \in[0, T]}$ is given by $R_{t}=W_{t}+\frac{\mu-r}{\sigma} t$, is the unique solution to the primal problem

$$
\left.u(x)=\sup _{X \in \mathcal{C}(x)} E[U(X)], \quad x \in\right] 0, \infty[
$$

c) Deduce that \widehat{X}_{x} is the terminal wealth gained from the initial capital x trading according to θ^{x}, where $\theta^{x}=\left(\theta_{t}^{x}\right)_{t \in[0, T]}$ is given by

$$
\left.\theta_{t}^{x}=\frac{x}{S_{t}} \frac{1}{1-\gamma} \frac{\mu-r}{\sigma^{2}} \mathcal{E}\left(\frac{1}{1-\gamma} \frac{\mu-r}{\sigma} R\right)_{t}, \quad x \in\right] 0, \infty[
$$

and show that

$$
\left.u(x)=\frac{x^{\gamma}}{\gamma} \exp \left(\frac{1}{2} \frac{\gamma}{1-\gamma} \frac{(\mu-r)^{2}}{\sigma^{2}} T\right), \quad x \in\right] 0, \infty[.
$$

