Coordinator Matti Kiiski

Mathematical Finance Exercise Sheet 4

Please hand in until Friday, 6.11.2015, 12:00.

Exercise 4-1

Consider a financial market with a constant interest rate r and a risky asset whose discounted price process follows a Merton-type jump diffusion, that is,

$$\frac{dS_t}{S_{t-}} = (\mu - r)dt + \sigma dW_t + dJ_t, \quad S_0 > 0,$$

where J is a compensated compound Poisson process with jumps $\Delta J \ge 0$ and independent of W, and ν, σ are constant. More precisely,

$$J_t = \sum_{k=1}^{N_t} (Y_k - 1),$$

where N is a Poisson process with intensity λ and $Y_k \geq 1$ are integrable i.i.d. random variables with $m := E[Y_1]$. The filtration is $\mathbb{F} = \mathbb{F}^{W,J}$. Show that the process S can be expressed as

$$S_t = S_0 \exp(X_t),$$

where \tilde{X} is a Lévy process.

Exercise 4-2

Consider a stock price model based on a 2-dimensional Brownian motion (W, W') in its own filtration, where 1-dimensional stock price follows

$$dS_t = \mu_t dt + \sigma_t dW_t$$

and $\mu_t = \mu(t, S_t, Y_t)$ and $\sigma_t = \sigma(t, S_t, Y_t)$ are determined by continuous functions depending on the diffusion Y which follows

$$dY_t = b(t, Y_t)dt + a(t, Y_t)dB_t,$$

$$Y_0 = y_0.$$

Here B is a correlated Brownian motion: $B_t = \rho W_t + \sqrt{1 - \rho^2} W'_t$ for some constant $\rho \in (0, 1)$. We assume that the function $\frac{\mu}{\sigma}$ is uniformly bounded. The process Y is often called stochastic factor in this context.

- a) Show that $d \langle B, W \rangle_t = \rho dt$ and $d \langle S, Y \rangle_t = a(t, Y_t) \sigma(t, S_t, Y_t) \rho dt$.
- b) What is the general form of the density process of an ELMM Q for S?
- c) Find the dynamics of S and Y under such a measure; that is give stochastic differential equations for these processes involving only Brownian motions under Q, not under P.

Exercise 4-3

Let $(\Omega, \mathcal{F}, (\mathcal{F})_{t \in [0,T]}, P)$ be a filtered probability space with \mathcal{F}_0 *P*-trivial and $(\mathcal{F})_{t \in [0,T]}$ satisfying the usual conditions, and let $S = (S_t^1, \ldots, S_t^d)_{t \in [0,T]}$ be an \mathbb{R}^d -valued semimartingale satisfying NFLVR. Denote by $L^0_+(\Omega, \mathcal{F}, P)$ the space of all random variables taking values in $[0, \infty]$, endowed with the topology of convergence in probability. For x > 0 and y > 0, define the sets

$$\mathcal{C}(x) := \{ X_T \in L^0_+(\Omega, \mathcal{F}, P) : X_T \le x + (H \cdot S)_T \text{ for admissible } H \}$$

$$\mathcal{D}(y) := y\mathcal{D}(1) := y\mathcal{D} := y\{Y_T \in L^0_+(\Omega, \mathcal{F}, P) : E[X_TY_T] \le 1 \ \forall X_T \in \mathcal{C}(1) \}$$

Moreover, let $U := [0, \infty[\to \mathbb{R}]$ be an increasing and concave (utility) function, and suppose that $u(x) := \sup_{X_T \in \mathcal{C}(x)} E[U(X_T)] < \infty$ for some (and hence all) x > 0. Set $U^+(\mathcal{C}(x)) := \{U^+(X_T) : X_T \in \mathcal{C}(x)\}$.

- a) Fix x > 0. Show that $\mathcal{C}(x)$ is convex and closed in $L^0_+(\Omega, \mathcal{F}, P)$. *Hint:* Use the fact that $X_T \in L^0_+(\Omega, \mathcal{F}, P)$ is in $\mathcal{C}(x)$ if and only if $\sup_{Y_T \in \mathcal{D}} E[X_T Y_T] \leq x$.
- c) Suppose now that there exist a > 0 and 0 < b < 1 such that $U^+(x) \leq a(1+x^b)$ for all x > 0 and an equivalent σ -martingale measure $Q \sim P$ on \mathcal{F} for S such that $\left(\frac{dQ}{dP}\right)^{-1}$ has moments of all orders. Fix x > 0, and show that $U^+(\mathcal{C}(x))$ is uniformly integrable. *Hint:* By using the growth assumption on U^+ , reduce the problem to showing that $\mathcal{C}(x)$ is bounded in L^p with p > 1 small enough. Then switch from P to Q.

Exercise 4-4

Let $(\Omega, \mathcal{F}, (\mathcal{F})_{t \in [0,T]}, P)$ be a filtered probability space with \mathcal{F}_0 *P*-trivial and $(\mathcal{F})_{t \in [0,T]}$ satisfying the usual conditions and let $S = (S_t^1, \ldots, S_t^d)_{t \in [0,T]}$ be an \mathbb{R}^d -valued semimartingale satisfying NFLVR. Assume that there exists a unique equivalent σ -martingale measure $Q \sim P$ on \mathcal{F}_T , i.e., the market (1, S) is complete. Let $U :]0, \infty[\to \mathbb{R}$ be an increasing differentiable strictly concave utility function such that

$$U'(0) := \lim_{x \downarrow 0} U'(x) = \infty.$$

Define the functions u, V, v and I on $]0, \infty[$ as in the lecture and the sets $\mathcal{C}(x)$ and $\mathcal{D}(y), x, y > 0$, as in the previous exercise. We assume that $u(x) < \infty$ for some (and hence all) $x \in]0, \infty[$.

a) Fix y > 0. Show that

$$z \leq y \frac{dQ}{dP}$$
 P-a.s. for all $z \in \mathcal{D}(y)$

where $\frac{dQ}{dP}$ denotes the density of Q with respect to P on \mathcal{F} . Deduce that

$$v(y) = \inf_{z \in \mathcal{D}(y)} E[V(z)] = E\left[V\left(y\frac{dQ}{dP}\right)\right],$$

where $E[V(z)] := \infty$ if $V^+(z) \notin L^1(P)$.

Hint: Suppose that there is $z \in \mathcal{D}(y)$ such that $A := \{z > y \frac{dQ}{dP}\}$ has P[A] > 0. Set a := Q[A], and use that completeness of S is equivalent to the *predictable representation property* of S under Q to deduce that there exists an admissible H such that $1_A = a + (H \cdot S)_T$.

b) Let $y_0 := \inf\{y > 0 : v(y) < \infty\}$. Show that the function v is in $C^1(]y_0, \infty[)$ and satisfies

$$v'(y) = E\left[\frac{dQ}{dP}V'\left(y\frac{dQ}{dP}\right)\right], \quad y \in]y_0, \infty[x]$$

Hint: Apply the fundamental theorem of calculus to the function $y \mapsto V\left(y\frac{dQ}{dP}\right)$ and take expectations.

c) Set $x_0 := \lim_{y \downarrow \downarrow y_0} -v'(y)$. Fix $x \in]0, x_0[$. Let $y_x \in]y_0, \infty[$ be the unique number such that $-v'(y_x) = x$. Show that $\widehat{X} := I\left(y_x \frac{dQ}{dP}\right)$ is the unique solution to the primal problem

$$u(x) = \sup_{X \in \mathcal{C}(x)} E[U(X)].$$

Hint: Show that $\widehat{X} \in \mathcal{C}(x)$ using part (a). Then use a Taylor expansion and the strict concavity of U in $]0, \infty[$ to argue that we have $E[U(X) - U(\widehat{X})] \leq 0$ for all $X \in \mathcal{C}(x)$ and that the inequality is an equality if and only if $X = \widehat{X}$ *P*-a.s.

Exercise 4-5

Let (Ω, \mathcal{F}, P) be a probability space supporting a Brownian motion $W = (W_t)_{t \in [0,T]}$. Denote by $(\mathcal{F}_t^W)_{t \in [0,T]}$ the natural (completed) filtration of W. Let $\sigma > 0$ and $\mu, r \in \mathbb{R}$. Consider the undiscounted Black-Scholes market $(\widetilde{S}^0, \widetilde{S}^1) = (\widetilde{S}_t^0, \widetilde{S}_t^1)_{t \in [0,T]}$ given by the SDEs

$$d\widetilde{S}_t^0 = r\widetilde{S}_t^0 dt$$
, $\widetilde{S}_0^0 = 1$, and $d\widetilde{S}_t^1 = \widetilde{S}_t^1(\mu dt + \sigma dW_t)$, $\widetilde{S}_0^1 = s > 0$.

Denote by $S^1 := \frac{\tilde{S}^1}{\tilde{S}^0}$ the discounted stock price. Let $U :]0, \infty[\to \mathbb{R}$ be defined by $U(x) = \frac{1}{\gamma} x^{\gamma}$, where $\gamma \in]-\infty, 1[\setminus\{0\}.$

a) Using part (a) of previous exercise show that

$$v(y) = \frac{1-\gamma}{\gamma} y^{-\frac{\gamma}{1-\gamma}} \exp\left(\frac{1}{2} \frac{\gamma}{(1-\gamma)^2} \frac{(\mu-r)^2}{\sigma^2} T\right), \quad y \in]0, \infty[$$

b) Using part (c) of previous exercise show that $\widehat{X} := x \mathcal{E} \left(\frac{1}{1-\gamma} \frac{\mu-r}{\sigma} R \right)_T$, where $R = (R_t)_{t \in [0,T]}$ is given by $R_t = W_t + \frac{\mu-r}{\sigma} t$, is the unique solution to the primal problem

$$u(x) = \sup_{X \in \mathcal{C}(x)} E[U(X)], \quad x \in]0, \infty[.$$

c) Deduce that \hat{X}_x is the terminal wealth gained from the initial capital x trading according to θ^x , where $\theta^x = (\theta^x_t)_{t \in [0,T]}$ is given by

$$\theta_t^x = \frac{x}{S_t} \frac{1}{1-\gamma} \frac{\mu-r}{\sigma^2} \mathcal{E}\left(\frac{1}{1-\gamma} \frac{\mu-r}{\sigma} R\right)_t, \quad x \in]0, \infty[,$$

and show that

$$u(x) = \frac{x^{\gamma}}{\gamma} \exp\left(\frac{1}{2} \frac{\gamma}{1-\gamma} \frac{(\mu-r)^2}{\sigma^2} T\right), \quad x \in]0, \infty[.$$