Mathematical Finance Exercise Sheet 6

Please hand in until Friday, 4.12.2015, 12:00.

Consider a finite horizon model $T<\infty$ with one risky and one risk-free asset. The price of the risky asset S is governed by a geometric Brownian motion with volatility σ and drift μ. The bond price B is supposed to be normalized: $B \equiv 1$. Take a strictly increasing and strictly concave utility function U on \mathbb{R}. Given an initial wealth $x \in \mathbb{R}$, the utility maximization problem is

$$
\begin{equation*}
\sup _{\varphi \in \mathcal{A}} E\left[U\left(x+\int_{0}^{T} \varphi_{u} d S_{u}\right)\right] \tag{1}
\end{equation*}
$$

Exercise 6-1

The value function of the utility maximization problem is defined by

$$
\begin{equation*}
u(t, x)=\operatorname{ess} \sup _{\varphi \in \mathcal{A}} E\left[U\left(X_{T}^{x, \varphi}\right) \mid \mathcal{F}_{t}\right], \quad(t, x) \in[0, T] \times \operatorname{dom}(U), \tag{2}
\end{equation*}
$$

where $X_{T}^{x, \varphi}:=x+\int_{t}^{T} \varphi_{u} d S_{u}$. Show that the martingale optimality principle follows from the dynamic programming principle. You may assume that, for every $(t, x) \in[0, T] \times \operatorname{dom}(U)$, the (essential) supremum in (2) is attained for some $\varphi \in \mathcal{A}$.

Exercise 6-2

Assume that the utility function is of the form

$$
U(x)=-e^{-\alpha x}, \quad x \in \mathbb{R}, \alpha>0 .
$$

Solve the utility maximization (1) via HJB.

Exercise 6-3

Let Q be the unique equivalent martingale measure. Show that if there exists a maximizer $\widehat{X}_{T}=x+\int_{0}^{T} \widehat{\varphi}_{u} d S_{u}$ for (1), then

$$
\frac{d Q}{d P}=\frac{1}{c} U^{\prime}\left(\widehat{X}_{T}\right)
$$

for some $c>0$. Determine the constant c for $U(x)=-e^{-\alpha x}, x \in \mathbb{R}, \alpha>0$, and a replicating portfolio for \widehat{X}_{T}.

Exercise 6-4

Solve the utility maximization problem (1) for a logaritmic utility: $U(x)=\log (x), x \in \mathbb{R}_{+}$.

Exercise 6-5

Given two points x_{1} and x_{2} in \mathbb{R}^{d}, the shortest path connecting x_{1} to x_{2} is a straight line. Verify this by formulating the statement as an optimal control problem and solving it.

