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Solution 2-1

Suppose that θ is a Type 2 arbitrage and that Vt(θ) is not non-negative a.s. for at least one
t ∈ {0, 1, ..., T − 1}. Then ∃ t < T and A ∈ Ft with P (A) > 0 s.t.

(θ · S)t(w) < 0 for ω ∈ A,
(θ · S)u ≥ 0 a.s. for u > t.

We amend θ to a new strategy φ by setting φu(ω) = 0 for all u ∈ T and ω ∈ Ω \A, while on
A we set φu(ω) = 0 if u ≤ t, and for u > t we define

φ0
u(ω) = θ0

u(ω)− θt · St
S0
t (ω)

φiu(ω) = θiu(ω) for i = 1, 2, ...d.

This strategy is obviously predictable. It is also self-financing: On Ω \A we have Vu(φ) ≡ 0
for all u ∈ T, while on A we need only check that ∆φt+1 ·St = 0, since ∆θu and ∆φu differ only
for u = t+ 1. We observe that φit = 0 on Ω \A for i > 0 and that, on A

∆φ0
t+1 = φ0

t+1 = θ0
t+1 −

θt · St
S0
t

,

∆φit+1 = θit+1 for i = 1, 2, ..., d.

Since θ is self-financing

(∆φt+1) · St = 1A(θt+1 · St − θt · St) = 1A(θt · St − θt · St) = 0.

Now we show that Vu(φ) ≥ 0 for all u ∈ T and P (VT (φ) > 0) > 0. First note that Vu(φ) = 0
on Ω \A for all u ∈ T. On A we also have Vu(φ) = 0 when u ≤ t, but for u > t we obtain

Vu(φ) = φu · Su =
(
θ0
u −

θt · St
S0
t

)
S0
u +

d∑
i=1

θiu · Siu = θu · Su −
θt · St
S0
t

S0
u

We have (θ · S)u ≥ 0 for u > t, and (θ · S)t < 0 while S0
t > 0, it follows that Vu(φ) ≥ 0 for

all u ∈ T, and, in particular, VT (φ) > 0 on A. So, φ is type 1 arbitrage.



Solution 2-2

a) We have, for every m > n,

Sm − Sn =
m∑

k=n+1

Ykβk =
m∑

k=n+2

Ykβk + Yn+1βn+1,

where

βn+1 >
∞∑

k=n+2

βk >
m∑

k=n+2

βk ≥
m∑

k=n+2

Ykβk.

We see that sign[Sm − Sn] = sign[Yn+1]. So, for any ϑ = h1]σ,τ ], where σ < τ and
h ∈ L∞(Fσ), we have

G∞(ϑ) = h(Sτ − Sσ) > 0 ⇐⇒ sign[hYn+1]1{σ=n<τ} > 0.

On the right hand side, Yn+1 is independent of Fn and takes both values −1,+1 with
positive probability. We conclude that there does not exist arbitrage for trading strategies
of form h1]σ,τ ]. This means that there does not exist simple arbitrage either. Indeed, if∑n

k=1 hk1]τk−1,τk] is an arbitrage opportunity, then there exists a minimal index k such

that Vτk ∈ L0
+ \ {0}. Put σ = τk−1, τ = τk. If k = 1 or if Vτk−1

(θ) = 0 we take h = hk.

Otherwise, A := {Vτk−1
(θ) < 0} has positive probability and we take h = hk1A. Now

h1]σ,τ ] is an arbitrage opportunity.

b) An equivalent local martingale measure Q must satisfy Q(Yn = +1) = Q(Yn = −1) = 1
2 .

For the marginals of P and Q, we have dPn

dQn = (1 + αn)1{Yn=+1} + (1 − αn)1{Yn=−1} and
dQn

dPn = 1
1+αn

1{Yn=+1}+ 1
1−αn

1{Yn=−1}. By Kakutani’s Dichotomy theorem, we have P ∼ Q
if and only if

∞∏
n=1

∫ (dPn
dQn

) 1
2
dQn > 0 and

∞∏
n=1

∫ (dQn
dPn

) 1
2
dPn > 0.

Both inequalities yield the same condition:

∞∏
n=1

(√1

2
(1 + αn) +

√
1

2
(1− αn)

)
> 0

x = log ex :⇐⇒
∞∑
n=1

log
(√1

2
(1 + αn) +

√
1

2
(1− αn)

)
> −∞

e−2x < 1− x < e−x, 0 < x <
1

2
:⇐⇒

∞∑
n=1

(
1−

(√1

2
(1 + αn) +

√
1

2
(1− αn)

))
<∞

⇐⇒
∞∑
n=1

α2
n <∞.

The last equivalence follows from the fact that (
√
a −
√
b)2 = a − 2

√
ab + b for a, b ≥ 0,

and
(x− y)2

4(1− δ)
≤ (
√
x−√y)2 =

(∫ y

x

dt

2
√
t

)2
≤ (x− y)2

4δ

for 0 < δ < 1
2 and δ < x, y < 1− δ.



Solution 2-3

Let us consider a standard Brownian motion W on [0, T ], and its (completed) natural filtration
F = (Ft)t∈[0,T ]. A normal distribution N(0, T ) is non-atomic, so, there exists a function f : R→
R+ such that f(WT ) ∼ µ. Put Mt := E[f(WT ) | Ft], t ∈ [0, T ]. Then M0 = E[f(WT )] = 1 and
MT = f(WT ) ∼ µ. The measure µ is fully supported on R+, so f ≥ 0, and consequently M ≥ 0.
Because M is a martingale with respect to a Brownian filtration, its paths are continuous almost
surely. The distribution of M is a martingale measure on Ω.

Solution 2-4

By Ito formula,

dSt =
∑
i

wi(Wt)dW
i
t +

1

2

∑
i

wi,i(Wt)dt =: dMt +
1

2
∆w(Wt)dt =: dMt + dAt.

Now, if ∆w = 0 on Rd, we see that S is a continuous local martingale for every starting point
S0 ∈ Rd. But if we assume that S is a continuous local martingale for some S0 ∈ Rd, then so is
A = S −M . On the other hand, it is also of bounded variation, so A = 0. Here, it follows that
∆w = 0.

Solution 2-5

The result is known as Strassen’s theorem. The necessity follows from Jensen’s inequality.
We show the sufficiency. We begin by proving an auxiliary result (also from Strassen). We
assume the weak topology and finite first moments for probability measures.

Step 1: Lemma. Let us denote X × Y := R × R, and by πX and πY the projections from
X × Y onto X and Y , respectively. Then the marginals of measure λ on X × Y can be written
as push-forward measures

λ ◦ π−1
X and λ ◦ π−1

Y .

Given a non-empty convex closed set Λ of probability measures on X × Y and marginals µ and
υ, there exists a probability measure λ ∈ Λ with µ = λ ◦ π−1

X and υ = λ ◦ π−1
Y if and only if∫

f(x)µ(dx)+

∫
g(y)υ(dy) ≥ inf

λ̃∈Λ
{
∫

((f◦πX)(x, y)+(g◦πY )(x, y))λ̃(dx×dy)}, ∀f ∈ Cb(X), ∀g ∈ Cb(Y ).

The necessity is clear in the statement. We show the sufficiency. Let MΛ denote the set of all
possible pairs of marginals of measures in Λ, i.e.,

MΛ := {(µ̃, υ̃) : ∃λ̃ ∈ Λ s.t. µ̃ = λ̃ ◦ π−1
X and υ̃ = λ̃ ◦ π−1

Y }.

The set MΛ is convex. Since Λ is closed and projection mappings are continuous, MΛ is also
closed. We have (µ, υ) ∈MΛ, as otherwise there would exist f, g ∈ Cb(R) s.t.∫

f(x)µ(dx) +

∫
g(y)υ(dy) < inf

(µ̃,υ̃)∈MΛ

{
∫
f(x)µ̃(dx) +

∫
g(y)υ̃(dy)},

which contradicts the assumption.
Step 2: The set of martingale measure satisfies the assumptions of Lemma. The set of

martingale measures Λ on R2 is clearly convex and non-empty. It is also closed:

Λ := {λ : λ is a martingale measure on R2}

= {λ :

∫
y1A(x)λ(dx× dy) =

∫
x1A(x)λ(dx× dy) ∀A ∈ B(R)}

= {λ :

∫
yf(x)λ(dx× dy) =

∫
xf(x)λ(dx× dy) ∀f ∈ Cb(R)}

=
⋂

f∈Cb(R)

{λ :

∫
(y − x)f(x)λ(dx× dy) = 0}.



The first, second and last equality are just definitions and the third follows using standard
approximation argument. Assuming finite first moments on the marginals, the mapping

λ 7→
∫
R2

(y − x)f(x)λ(dx× dy) = lim
K→∞

∫
[−K,K]×[−K,K]

(y − x)f(x)λ(dx× dy)

is continuous, for every f ∈ Cb(R). So, Λ is an intersection of closed sets: Λ is closed.
Step 3: The set of martingale measures satisfies the condition in Lemma. Given f, g ∈ Cb(R),

let g0 denote the largest convex minorant of g. We have∫
f(x)µ(dx) +

∫
g(y)υ(dy) ≥

∫
f(x)µ(dx) +

∫
g0(y)υ(dy)

≥
∫

(f(x) + g0(x))µ(dx)

≥ inf
x∈R
{f(x) + g0(x)}.

Let r ∈ R. We will show

r > inf
x∈R
{f(x) + g0(x)} =⇒ r > inf

λ̃∈Λ
{
∫

((f ◦ πX)(x, y) + g ◦ πY (x, y))λ̃(dx× dy).

The mapping

t 7→ inf
υ̃
{
∫
g(y)υ̃(dy) :

∫
yυ̃(dy) = t}

is a convex minorant of g, and, for every t ∈ R, the linear functional on the right-hand side
attains its infimum on the compact domain. So, there exists s ∈ R and υ̃∗ s.t.

r > f(s)+g0(s) ≥ f(s)+inf
υ̃
{
∫
g(y)υ̃(dy) :

∫
yυ̃(dy) = s} =

∫
((f◦πX)(x, y)+g◦πY (x, y))(δs⊗υ̃∗)(dx×dy).

Exercise sheets and further information are also available on:

http://www.math.ethz.ch/education/bachelor/lectures/hs2015/math/mf/


