Mathematical Finance Solutions Sheet 3

Solution 3-1

a) The market price of risk equation is

$$
\sigma_{t} \lambda_{t}=\mu_{t}-r_{t} \mathbf{1}=: b_{t}, t \in[0, T]
$$

where 1 denotes the vector whose entries are all equal to 1 . By the assumption, this equation has a P-almost surely unique solution $\lambda_{t}=\sigma_{t}^{-1} b_{t}$ for every $t \in[0, T]$.
b) The equivalent local martingale measures Q are parametrized via

$$
Z_{t}^{Q}=\left.\frac{d Q}{d P}\right|_{\mathcal{F}_{t}}=\mathcal{E}\left(-\int b^{T}\left(\sigma \sigma^{T}\right)^{-1} \sigma d W+\int \nu d W\right)_{t}, t \in[0, T]
$$

with $\sigma \nu=0$. Since σ is invertible, $\nu=0$ and

$$
Z^{Q}=\mathcal{E}\left(-\int b^{T}\left(\sigma^{T}\right)^{-1} d W\right)=\mathcal{E}\left(-\int \lambda^{T} d W\right)
$$

is unique. So, Q is unique.
c) Let $H \in L^{\infty}\left(\mathcal{F}_{T}\right)$ denote the discounted payoff at time T and define the Q-martingale

$$
Y_{t}:=E_{Q}\left[H \mid \mathcal{F}_{t}\right], \quad 0 \leq t \leq T
$$

Denoting $Z_{t}^{Q}=\left.\frac{d Q}{d P}\right|_{\mathcal{F}_{t}}=\mathcal{E}\left(-\int \lambda^{T} d W\right)_{t}$ (by b) and applying Bayes' rule we deduce that $Y_{t} Z_{t}^{Q}$ is a P-martingale. By the standard representation theorem for martingales, we can therefore write $Y Z^{Q}$ as a stochastic integral with respect to W, that is

$$
Y_{t} Z_{t}^{Q}=Y_{0}+\int_{0}^{t} \psi_{s} d W_{s}
$$

By Ito's formula we obtain

$$
d Y_{t}=\left(\frac{1}{Z_{t}^{Q}} \psi_{t}+Y_{t} \lambda_{t}^{T}\right) d W^{Q}
$$

where W^{Q} denotes the Girsanov transformed Q-Brownian motion. Observe that this is a martingale representation with respect to W^{Q}. In order to show attainability of H we have to find some admissible θ such that

$$
d Y_{t}=\sum_{i=1}^{d} \theta_{t}^{i} d S_{t}^{i}
$$

is satisfied. Since $d S_{t}^{i}=S_{t}^{i} \sum_{j=1}^{d} \sigma_{t}^{i j} d\left(W_{t}^{Q}\right)^{j}$ and since σ is invertible, we can define θ^{i} by

$$
\theta^{i}=\frac{\left(\left(\frac{1}{Z^{Q}} \psi+Y \lambda^{T}\right) \sigma^{-1}\right)_{i}}{S^{i}}
$$

yielding

$$
Y_{t}=E_{Q}[H]+\int_{0}^{t} \sum_{i=1}^{d} \theta_{t}^{i} d S_{t}^{i}
$$

Note that admissibility is satisfied since the left hand side of the above equation is a.s. bounded, implying that the gains process $\int_{0}^{t} \sum_{i=1}^{d} \theta_{t}^{i} d S_{t}^{i}$ is a.s. bounded (from below).

Solution 3-2

There exists a measure Q such that the discounted stock price process, $S=\left(S_{t}\right)_{t \in[0, T]}$,

$$
S_{t}=S_{0} \exp \left(\sigma W_{t}^{Q}-\frac{1}{2} \sigma^{2} t\right)
$$

is a martingale. W^{Q} denotes a Q-Brownian motion. The undiscounted stock price process \widetilde{S} is given by

$$
\widetilde{S}_{t}=e^{r t} S_{t}=e^{r t} S_{0} \exp \left(\sigma W_{t}^{Q}-\frac{1}{2} \sigma^{2} t\right), t \in[0, T]
$$

We have

$$
\widetilde{S}_{T}=e^{r(T-t)} \widetilde{S}_{t} \exp \left(\sigma\left(W_{T}^{Q}-W_{t}^{Q}\right)-\frac{1}{2} \sigma^{2}(T-t)\right), t \in[0, T]
$$

The value of a power option, payoff $h\left(\widetilde{S}_{T}\right)=\widetilde{S}_{T}^{p}$, at time t is its discounted expected value:

$$
\begin{aligned}
& V_{t}=e^{-r(T-t)} E_{Q}\left[h\left(\widetilde{S}_{T}\right) \mid \mathcal{F}_{t}\right] \\
&=e^{-r(T-t)} E_{Q}\left[\widetilde{S}_{T}^{p} \mid \mathcal{F}_{t}\right] \\
&=e^{-r(T-t)} \widetilde{S}_{t}^{p} e^{p r(T-t)} e^{-\frac{1}{2} p \sigma^{2}(T-t)} \\
&=E_{Q}\left[e^{p \sigma\left(W_{T}^{Q}-W_{t}^{Q}\right)} \mid \mathcal{F}_{t}\right] \\
&=\widetilde{S}_{t}^{-r(T-t)} \widetilde{S}_{t}^{p} e^{p r(T-t)} e^{-\frac{1}{2} p \sigma^{2}(T-t)} \\
& e^{\frac{1}{2} p^{2} \sigma^{2}(T-t)} \\
&\left.=\frac{1}{2} \sigma^{2} p\right)(p-1)(T-t)
\end{aligned}
$$

The Δ-hedging strategy $\varphi=(\theta, \eta)$,

$$
d V_{t}:=\theta_{t} d \widetilde{S}_{t}+\left(V_{t}-\theta_{t} \widetilde{S}_{t}\right) r d t:=\theta_{t} d \widetilde{S}_{t}+\eta_{t} r d t
$$

is

$$
\begin{aligned}
\theta_{t} & =\frac{\partial V_{t}}{\partial \widetilde{S}_{t}}=p \widetilde{S}_{t}^{p-1} e^{\left(r+\frac{1}{2} \sigma^{2} p\right)(p-1)(T-t)} \\
\eta_{t} & =e^{-r t}\left(V_{t}-\theta_{t} \widetilde{S}_{t}\right)=e^{-r t}(1-p) \widetilde{S}_{t}^{p} e^{\left(r+\frac{1}{2} \sigma^{2} p\right)(p-1)(T-t)}
\end{aligned}
$$

where $t \in[0, T]$.

Solution 3-3

Under the assumptions, V is a supermartingale with $\sup _{t \in[0, T]}\left|V_{t}\right| \in L^{1}$, and so has a DoobMeyer decomposition

$$
V_{t}=V_{0}+\widetilde{M}_{t}-\widetilde{A}_{t}
$$

where \widetilde{M} is a martingale vanishing at zero, and \widetilde{A} an integrable predictable increasing process, also vanishing at zero. We have

$$
\sup _{0 \leq t \leq T}\left|\widetilde{M}_{t}\right| \leq \sup _{0 \leq t \leq T} E\left[\sup _{0 \leq s \leq T}\left|U_{s}\right| \mid \mathcal{F}_{t}\right]+\left|V_{0}\right|+\widetilde{A}_{T}
$$

so, $\widetilde{M} \in H_{0}^{1}$. And since $U_{t} \leq V_{t}=V_{0}+\widetilde{M}_{t}-\widetilde{A}_{t}$,

$$
\begin{aligned}
\inf _{M \in H_{0}^{1}} E\left[\sup _{0 \leq t \leq T}\left(U_{t}-M_{t}\right)\right] & \leq E\left[\sup _{0 \leq t \leq T}\left(U_{t}-\widetilde{M}_{t}\right)\right] \\
& \leq E\left[\sup _{0 \leq t \leq T}\left(V_{t}-\widetilde{M}_{t}\right)\right] \\
& \leq E\left[\sup _{0 \leq t \leq T}\left(V_{0}-\widetilde{A}_{t}\right)\right] \\
& =V_{0}
\end{aligned}
$$

On the other, for any other $M \in H_{0}^{1}$, we have

$$
V_{0}=\sup _{0 \leq \tau \leq T} E U_{\tau}=\sup _{0 \leq \tau \leq T} E\left[U_{\tau}-M_{\tau}\right] \leq E\left[\sup _{0 \leq t \leq T}\left(U_{t}-M_{t}\right)\right]
$$

i.e.,

$$
V_{0} \leq \inf _{M \in H_{0}^{1}} E\left[\sup _{0 \leq t \leq T}\left(U_{t}-M_{t}\right)\right]
$$

Solution 3-4

Assume a density f for S_{T}. Recall Leibniz integration rule

$$
\frac{\partial}{\partial K} \int_{a(K)}^{b(K)} f(x, K) d x=\frac{d b(K)}{d K} f(b(K), K)-\frac{d a(K)}{d K} f(a(K), K)+\int_{a(K)}^{b(K)} \frac{\partial}{\partial K} f(x, K) d x
$$

For a call option

$$
C(K)=\int_{0}^{\infty}(x-K)^{+} f(x) d x=\int_{K}^{\infty}(x-K) f(x) d x
$$

we get

$$
\frac{\partial C}{\partial K}=0-(K-K) f(K)-\int_{K}^{\infty} f(x) d x=-\int_{K}^{\infty} f(x) d x
$$

Since

$$
1=\int_{0}^{\infty} f(x) d x=\int_{0}^{K} f(x) d x+\int_{K}^{\infty} f(x) d x
$$

by Fundamental Theorem of Calculus, we get "Breeden-Litzenberger formula"

$$
\frac{\partial^{2} C}{\partial K^{2}}(K)=\frac{\partial}{\partial K}\left[\int_{0}^{K} f(x) d x-1\right]=f(K)
$$

Similarly for a put option

$$
\frac{\partial^{2} P}{\partial K^{2}}(K)=f(K)
$$

So,

$$
E\left[w\left(S_{T}\right)\right]=\int_{0}^{\infty} w(K) f(K) d K=\int_{0}^{S_{0}} w(K) \frac{\partial^{2} P}{\partial K^{2}}(K) d K+\int_{S_{0}}^{\infty} w(K) \frac{\partial^{2} C}{\partial K^{2}}(K) d K=\cdots
$$

and, by integration by parts,

$$
\begin{aligned}
& \cdots=\left.\left[w(K) \int_{0}^{K} f(x) d x\right]\right|_{0} ^{S_{0}}-\int_{0}^{S_{0}} w^{\prime}(K) \frac{\partial P}{\partial K}(K) d K+\left.\left[w(K)\left(\int_{0}^{K} f(x) d x-1\right)\right]\right|_{S_{0}} ^{\infty}-\int_{S_{0}}^{\infty} w^{\prime}(K) \frac{\partial C}{\partial K}(K) d K \\
& =w\left(S_{0}\right)-\int_{0}^{S_{0}} w^{\prime}(K) \frac{\partial P}{\partial K}(K) d K-\int_{S_{0}}^{\infty} w^{\prime}(K) \frac{\partial C}{\partial K}(K) d K \\
& =w\left(S_{0}\right)-\left.\left[w^{\prime}(K) P(K)\right]\right|_{0} ^{S_{0}}+\int_{0}^{S_{0}} w^{\prime \prime}(K) P(K) d K-\left.\left[w^{\prime}(K) C(K)\right]\right|_{S_{0}} ^{\infty}+\int_{S_{0}}^{\infty} w^{\prime \prime}(K) C(K) d K \\
& =w\left(S_{0}\right)+\int_{0}^{S_{0}} w^{\prime \prime}(K) P(K) d K+\int_{S_{0}}^{\infty} w^{\prime \prime}(K) C(K) d K .
\end{aligned}
$$

Solution 3-5

We may assume $\left(x_{n}\right) \subset \operatorname{int} \operatorname{dom}(f)$. We have

$$
\begin{equation*}
f_{n}(y) \geq f_{n}\left(x_{n}\right)+\left\langle x_{n}^{*}, y-x_{n}\right\rangle \forall y \in X \forall n \in \mathbb{N} . \tag{1}
\end{equation*}
$$

There exists $\delta>0$ such that $f_{n} \rightarrow f$ uniformly on $B(x, \delta) \subset$ int $\operatorname{dom}(f)$. Choose $y_{n}=$ $x_{n}+\frac{\delta}{2} \frac{x_{n}^{*}}{\left\|x_{n}^{*}\right\|} 1_{\left\{x_{n}^{*} \neq 0\right\}}$. Then

$$
f_{n}\left(x_{n}+\frac{\delta}{2} \frac{x_{n}^{*}}{\left\|x_{n}^{*}\right\|} 1_{\left\{x_{n}^{*} \neq 0\right\}}\right)-f_{n}\left(x_{n}\right) \geq \frac{\delta}{2}\left\|x_{n}^{*}\right\| 1_{\left\{x_{n}^{*} \neq 0\right\}} .
$$

Taking limits on both sides yields

$$
f\left(x+\frac{\delta}{2} \frac{x^{*}}{\left\|x^{*}\right\|} 1_{\left\{x^{*} \neq 0\right\}}\right)-f(x) \geq \frac{\delta}{2} \lim _{n \rightarrow \infty}\left\|x_{n}^{*}\right\| 1_{\left\{x_{n}^{*} \neq 0\right\}}
$$

and $\lim _{n \rightarrow \infty}\left\|x_{n}^{*}\right\|=\infty$ would be a contradiction. So, $\left(x_{n}^{*}\right)$ is bounded. Assume now that $x_{n}^{*} \rightarrow x^{*}$. Returning to inequality (1), it is sufficient to show that it holds for all $y \in B(x, \delta)$. We have

$$
\begin{aligned}
f_{n}(y) & \geq f_{n}\left(x_{n}\right)+\left\langle x_{n}^{*}, y-x_{n}\right\rangle \\
& =f_{n}\left(x_{n}\right)+\left\langle x^{*}, y-x_{n}\right\rangle+\left\langle x_{n}^{*}-x^{*}, y-x_{n}\right\rangle,
\end{aligned}
$$

where

$$
\begin{aligned}
\left|\left\langle x_{n}^{*}-x^{*}, y-x_{n}\right\rangle\right| & \leq\left|\left\langle x_{n}^{*}-x^{*}, y\right\rangle\right|+\left|\left\langle x_{n}^{*}-x^{*}, x_{n}\right\rangle\right| \\
& \leq \| x_{n}^{*}-x^{*}| |\left(\delta+\sup _{n}\left\|x_{n}\right\|\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$ yields

$$
f(y) \geq f(x)+\left\langle x^{*}, y-x\right\rangle \forall y \in B(x, \delta),
$$

i.e., $x^{*} \in \partial f(x)$.

