Mathematical Finance Solutions Sheet 6

Solution 6-1

Consider any, potentially suboptimal, trading strategy $\varphi \in \mathcal{A}$, and fix $0 \leq s \leq t \leq T$. As we are assuming that the supremum in

$$
u\left(t, X_{t}^{\varphi}\right)=\operatorname{ess}_{\sup }^{\varphi \in \mathcal{A}} \mid ~ E\left[U\left(X_{t}^{\varphi}+\int_{t}^{T} \varphi_{u} d S_{u}\right) \mid \mathcal{F}_{t}\right]
$$

is attained for some $\widehat{\psi} \in \mathcal{A}$ on $[t, T]$, we have

$$
\begin{align*}
E\left[u\left(t, X_{t}^{\varphi}\right) \mid \mathcal{F}_{s}\right] & =E\left[E\left[U\left(X_{t}^{\varphi}+\int_{t}^{T} \widehat{\psi}_{u} d S_{u}\right) \mid \mathcal{F}_{t}\right] \mid \mathcal{F}_{s}\right] \tag{1}\\
& =E\left[U\left(X_{s}^{\varphi}+\int_{s}^{t} \varphi_{u} d S_{u}+\int_{t}^{T} \widehat{\psi}_{u} d S_{u}\right) \mid \mathcal{F}_{s}\right] \leq u\left(s, X_{s}^{\varphi}\right)
\end{align*}
$$

Suppose that the investor has followed the optimal trading strategy $\widehat{\varphi} \in \mathcal{A}$ on the sub-interval $[0, t]$. The dynamic programming principle states that if the investor is allowed to re-examine her portfolio choice taking account her present wealth $X_{t}^{\widehat{\varphi}}$, the optimal strategy that she will choose, $\widehat{\psi}$, coincides with her initial choice $\widehat{\varphi}$, which yields an equality in (1).

Solution 6-2

By, Ito's formula,

$$
d u\left(t, X_{t}^{\varphi}\right)=\left(u_{t}+u_{x}\left[\varphi_{t} S_{t}\right] \mu+\frac{1}{2}\left[\varphi_{t} S_{t}\right]^{2}\right) d t+u_{x}\left[\varphi_{t} S_{t}\right] \sigma d W_{t}
$$

for any $\varphi \in \mathcal{A}$. By the martingale optimality principle, the drift of value function (process) should be non-positive for any strategy and vanish for the optimal. The drift rate is a quadratic function of the risky position $\vartheta_{t}:=\varphi_{t} S_{t}$. Taking pointwise maximum

$$
\widehat{\vartheta}_{t}:=\frac{\mu}{\left(-u_{x x} / u_{x}\right) \sigma}
$$

and inserting $\widehat{\vartheta}$ back to the drift rate, which should vanish for the maximizing choice, leads us to the HJB equation:

$$
u_{t}=\frac{u_{x}^{2}}{u_{x x}} \frac{\mu^{2}}{2 \sigma^{2}}
$$

For the exponential utility we have

$$
u(t, x)=\operatorname{ess}_{\sup _{\varphi}} E\left[-e^{-\alpha\left(x+\int_{t}^{T} \varphi_{u} d S_{u}\right)} \mid \mathcal{F}_{t}\right]=e^{-\alpha x} \phi(t)
$$

So, the optimal risky position (resp. number of shares) is $\widehat{\vartheta}=\frac{\mu}{\alpha \sigma}$ (resp. $\widehat{\varphi}_{t}=\frac{\mu}{\alpha \sigma^{2}} \frac{1}{S_{t}}$) and HJB reduces to ODE

$$
\phi^{\prime}=\frac{\mu^{2}}{2 \sigma^{2}} \phi
$$

The solution satisfying the terminal condition, $\phi(T)=-1$, is

$$
\phi(t)=-\exp \left(-\frac{\mu^{2}}{2 \sigma^{2}}(T-t)\right)
$$

i.e.,

$$
u(0, x)=-\exp \left(-\alpha x-\frac{\mu^{2}}{2 \sigma^{2}} T\right)
$$

Solution 6-3

Define the convex conjugate of U as

$$
V(y)=\sup _{x \in \operatorname{dom}(U)}\{U(x)-x y\}, y>0
$$

By the Fenchel inequality, $U(x) \leq V(y)+x y$ for all $x \in \operatorname{dom}(U)$ and $y>0$. Hence,

$$
E\left[U\left(X_{T}\right)\right] \leq E\left[V\left(y \frac{d Q}{d P}\right)\right]+E_{Q}\left[y X_{T}\right] \leq E\left[V\left(y \frac{d Q}{d P}\right)\right]+y x
$$

for every $x \in \operatorname{dom}(U), y>0$ and wealth process X that is supermartingale under Q, and the equality is achieved if $y \frac{d Q}{d P}=U^{\prime}\left(X_{T}\right)$ and $E_{Q}\left[X_{T}\right]=x$. Since U is strictly increasing and strictly concave, we have $c>0$ for $c \frac{d Q}{d P}=U^{\prime}\left(\widehat{X}_{T}\right)$.

Now, let $U(x)=-e^{-\alpha x}$. Then the inverse of marginal utility is $\left(U^{\prime}\right)^{-1}(x)=-\frac{1}{\alpha} \log \left(\frac{x}{\alpha}\right)$ and we have

$$
x=E_{Q}\left[\widehat{X}_{T}\right]=E\left[\frac{d Q}{d P}\left(U^{\prime}\right)^{-1}\left(c \frac{d Q}{d P}\right)\right]=E\left[\frac{d Q}{d P}\left(-\frac{1}{\alpha} \log \left(\frac{c}{\alpha} \frac{d Q}{d P}\right)\right)\right]
$$

so,

$$
c=\alpha e^{-\alpha x-E\left[\frac{d Q}{d P} \log \left(\frac{d Q}{d P}\right)\right]}
$$

In Black-Scholes with zero interest rate, the equivalent martingale measure is given by

$$
\begin{equation*}
\frac{d Q}{d P}=\exp \left(-\int_{0}^{T} \frac{\mu}{\sigma} d W_{t}-\int_{0}^{T} \frac{\mu^{2}}{2 \sigma^{2}} d t\right) \tag{2}
\end{equation*}
$$

We have

$$
\begin{aligned}
\widehat{X}_{T}=x+\int_{0}^{T} \varphi_{t} d S_{t}=-\frac{1}{\alpha} \log \left(\frac{c}{\alpha} \frac{d Q}{d P}\right) & =-\frac{\log (c / \alpha)}{\alpha}+\int_{0}^{T} \frac{\mu}{\alpha \sigma} d W_{t}+\int_{0}^{T} \frac{\mu^{2}}{2 \alpha \sigma^{2}} d t \\
& =x+\int_{0}^{T} \frac{\mu}{\alpha \sigma^{2}} \frac{1}{S_{t}}\left(S_{t} \sigma d W_{t}+S_{t} \mu d t\right)
\end{aligned}
$$

So, $\widehat{\varphi}_{t}=\frac{\mu}{\alpha \sigma^{2}} \frac{1}{S_{t}}$.

Solution 6-4

We have $U(x)=\log (x)$, so the inverse of the marginal utility function $\left(U^{\prime}\right)^{-1}$ is $y \mapsto \frac{1}{y}$. Denote by Z the density process of Q w.r.t. P. The optimal wealth process is

$$
X_{t}^{x, \varphi}=E_{Q}\left[\left.\frac{1}{c Z_{T}} \right\rvert\, \mathcal{F}_{t}\right]=E\left[\left.\frac{Z_{T}}{Z_{t}} \frac{1}{c Z_{T}} \right\rvert\, \mathcal{F}_{t}\right]=\frac{1}{c Z_{t}}=: M_{t}, 0 \leq t \leq T
$$

where c is s.t. $X_{0}^{x, \varphi}=x$, and so $c=1 / x$. Hence, $X_{t}^{x, \varphi}=x / Z_{t}, 0 \leq t \leq T$. Now, from (2), we deduce by Ito formula that

$$
d M_{t}=M_{t} \frac{\mu}{\sigma} d W_{t}
$$

As in the previous exercise, identifying this with the dynamics of the wealth process we get the optimal portfolio in terms of number of shares:

$$
\varphi_{t}=\frac{\mu}{\sigma^{2}} \frac{X_{t}^{x, \varphi}}{S_{t}}, 0 \leq t \leq T
$$

or equivalently as a proportion of the wealth:

$$
\pi_{t}=\frac{\varphi_{t} S_{t}}{X_{t}^{x, \varphi}}=\frac{\mu}{\sigma^{2}}, 0 \leq t \leq T
$$

Solution 6-5

We may think that we are moving a point that moves with a unit speed. Let $x=x(t)$ denote the position of point in \mathbb{R}^{d}. Then $x(0)=x_{1}, x(T)=x_{2}$, and we minimize

$$
\int_{0}^{T}|\dot{x}(t)| d t=\int_{0}^{T} d t=T
$$

for

$$
\dot{x}(t)=\alpha(t)
$$

where the control α takes values on the unit sphere $S^{1}=\left\{\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}: a_{1}^{2}+a_{2}^{2}=1\right\}$. The Hamiltonian is $H(x(t), \lambda(t), \alpha(t)):=\alpha(t) \cdot \lambda(t)-1$, where $\lambda(t)$ is the costate, and since

$$
\dot{\lambda}(t)=-\frac{\partial}{\partial x} H(x(t), \lambda(t), \alpha(t))=0
$$

it is a constant. Since $x(t)$ is understood as the position of a point moving at a unit velocity, it is reasonable to assume that $\lambda^{*} \neq 0$ as it represents the momentum of the point in Hamiltonian mechanics. By the Pontryagin's maximum principle,

$$
H\left(x^{*}(t), \lambda^{*}, \alpha^{*}(t)\right)=\max _{a \in S^{1}} H\left(x^{*}(t), \lambda^{*}, a\right)=\max _{a \in S^{1}}\left\{a \cdot \lambda^{*}-1\right\}
$$

which is maximized for $a^{*}=\frac{\lambda^{*}}{\left|\lambda^{*}\right|}$. Thus $\alpha^{*}(t)$ is equivalent to a constant a^{*}. We conclude that $x^{*}(t)$ is a line from x_{1} to x_{2}.

