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Solution 7-1

a) Since the interest rate is zero, n° = . So, from the self-financing condition, we get
= —=Sidgt + (1= N)Sidei, t € [0,T].
Similarly, plugging in the dynamics of .S, we get

dny = ppdt + onedWy + Spde® — Sydeps.

b) We assume that the value function depends on time ¢, the current value of safe position z
and the current value of risky position y, u = u(t, z,y). By, Ito’s Formula,

1
du(t7 77197 77t) = utdt + ul‘dng + uydnt + iuyyd@?? 77>
1
= (ug + pnruy + 502772uyy)dt + S(uy — uz)dcpb + Se((1 — Nug — uy)de; + onguy dWy.

By the martingale optimality principle, u(t, Y, 7;) must be a supermartingale for any n € A
and a martingale for the optimal 7). So, it follows that uy —u, < 0 and (1 —X)uz —uy <0,

i.e.,
1<t L
uy — 1=
and for 7, the drift must vanish in the interior of this region. We get
1 55 Ug 1
ut+m]tuy+§0 Nyuyy =0on 1< uiy < T v

Solution 7-2

As in the frictionless case (Exercise 6-2), by the scaling property of exponential utility, we may

rewrite
u(t,z,y) = e “u(t,0,y).

In the frictionless case, the corresponding equivalent annuity is

—aX?] ,u2

- 2a0?’

1
liminf —— log Ele
T—o00 aT & [
so, we expect similar behavior in the present setting:

0 _ a0
ult,ng,m) = —e e P (n,). (1)



Plugging (1) in HJB, we get

%02y2¢"(y) + 1y’ (y)aBe(y) =0 on 1 < _;?( —

y) 1
0 < . (2)

Denote [l,m[:={yeR:1< —od(y) 15 }. We then have a free boundary problem:

¢ (y)
L 590 / . —ap(y) 1
¢'(1) + ag'(1) = 0,
1
ﬁqb(m) +ag'(m).

The optimal boundaries are given by the smooth pasting condition:
¢"(1) + ad'(1) =0,
1
ﬁqb'(m) + ag”(m).

We get
1
=500 o + g = =0,
where 74— :=[. Similar argument for m shows that the other solution of quadratic equation is

Na+t := (1 — A)m. Since they solve the same quadratic equation, they are related via

I 1
= — 4 —\/pu2/ot -2 2).
fot = —— & —\/u? /ot — 2B/(ac?)
Solution 7-3
Plugging in our candidate solution, we get

g, — wlog(n/na-)) o

any
Let Y; := log(n:/Na—). The process Y is a reflected Brownian motion on the interval [0, log(ﬁzz—f)].

Indeed, in the interior of the interval, the dynamics Y coincide with those of Brownian motion,
and since Y must stay in the interval, we have

1
dy; = (u — 502)dt + odW; + dL; — dU;,

where L and U are non-decreasing local time processes, increasing only on {Y; = 0} and {¥; =

log(ﬁzz%)} respectively. The initial state is, by the definition of no-trade region, Yy = 0 if
xSy < Na—, Yo = log(ﬁzz—f) if 250 > E5Nat, and Yy = log(%) otherwise. Since Y =

log(n/na-), we have S = a:;;(i)y, which fixes the initial value of S. By Ito formula,

d(st/oma— ey)

St/anafey = —dLo=0)
and
do(V) W), 1, 1 Lu'(Y),,  w(Y) W' (¥3)



Differentiating ODE for w (w” —w' = 2uw'(w — %3)), the above expression reduces to

dw(Y) _ o0 o 201t/ -
W) (log(n¢/na-))dt + w(nt/na—)dwt+d(Lt Ut)

and the assertion now follows by the integration by parts. Since (w’ — w)’ is non-positive for
w < ;2 and positive for w > 2 and w = w’ on the boundaries, we have that the derivative of

w(y)/eY, that is (w'(y) —w(y))/ey is non-positive, so w(y)/e¥ is monotonic. Since w(0) = anq—

and w(log(t15 1et)) = amay, the process S = Oﬁ% stays in the bid-ask spread [(1 — \)S, S].

Solution 7-4

The density of an equivalent local martingale measure @ for S is
T T
1 2, 2
Zp = exp(— ocwdWy — 5 o w=dt).
0 0

Since a% is uniformly bounded and (1 — 5) < S < S, the local Q-martingale )A(;f =

)Nféf + fg cptdg’t, is a true martingale for every admissible ¢. As in the frictionless case (Exercise
-3), by the Jensen’s inequality and martingale property, we have

E[e—a)?ﬁ] _ E@[e—a)?;‘f—log(ZT)] > 6—O¢EQ[)?§€]_EQ[10g(ZT)] > e—af(éf—E@[log(ZT)}

ji - )

which yields an upper bound for equivalent annuities

hmmf—;log( e ])<hm1nf—(X“"+ L B5log(zn)). (3)

T—oo T—o0

On the other hand, for 7, and respective wealth process,

> = ! b w'(ne/na-)
X = (z+ xS ~|—/ now' (log o dt+/ Aaudw,
t ( 0) 0 n ( (nt/n )) 0 n w('r]t/'r]a_) t

we have
~ T T /
e~ aXT — —aXo exp(— / 770 w' (log(ne/Na— ))dt+/ ﬁaiw (nt/na_)th)
0 0

w(ne/Na-)
. o (4)
— =% exp(— / o?ww' dWy — 2/ ow'dt) =
0 0

by the dynamics of w(log(n/n.—)), we have

log(nT /1a—) T 1 r
/ (w(z) —w'( / - fa + (w—w')zo? (W — w"))dt + / o(w —w')dW;
log(no/Ma—) 0 2 0

T 1 T
/ (n— 70 Jw + 202w -0 ww)dt+/ o(w —w')dW;
0 0

so, (4) is equal to

uR log(nr /1) , 1, (T / “ T
o= 70 exp(/ (w(z) —w'(2))dz + 5 / (—w' — (2= — Dw)dt —/ owdWy)
log(no/na—) 0 0
s log (17 /Na-)
= ¢ X0 abT 7., exp(/ (w(z) —w'(2))dz)
log(n0/7a~)



Taking expectations, we get
- - log(nr /Ma—)
Ele=X1] = e_O‘XOe_D‘ﬂTE@[eXp(/

(w(2) = w/(2))dz)] := e %0e =T B fexp(Ny),
log(no/Ma—)

and since Np, 0 < T < 00, is uniformly bounded, we have

o1 —aX ! S
hTHi>101<1>f T log(Ele X$]) = llTHi>1£f a—T(—aXo —afT + log(E@[exp(NT)])) =0
in (3). On the other hand, by the Girsanov’s theorem,
Xo—Egllog Z < o= 17
e Xo—Egllog Zr] _ exp(—aXg + E@[/ ocwdWy; — 2/ 02w2dt]) =...
0 0

where W, = W, + fg owds denotes a @—Brownian motion, and similarly as in (4), we get

- log(nT /Ma—) T —
o (w(2) — w'(2))dz — / o(w — w')dWi])
log(no/Na—) 0
- log(nT /Na—) -
_ efaXoefozﬁT exp(EQv[/ (w(z) - w/(z))dz]) = efaXoefaﬁT eXp(E@ [NT])
log(n0/Ma—)
So,
liminf —(X¢ + ~ Exllog(Zr)]) = liminf = (Xo + ~ Ex[log(Z
imin T( 0 +& Q[og( ) = un 1n f( O+a Q[og( 7)])
| 1
= liminf — (6T — aE@[NT]) = p.

In the view of (3), 7 is long-term optimal.
Solution 7-5

By the definition, we have @Y = X, -7, t>0, Py ==z, and & = /S, t >0, o =y. As
& only increases (resp. decreases) when § = S (resp. S = (1 — \)S), the strategy (2°, ) is
self-financing, and since (1 — X)S < S < S, it is bounded as well, so § € A. Moreover, since
S>85>(1-X)Sand 0 < @ <1ne-/S, we have

PHPS 2+ 1-NS—57 8528 +55 ~ M-,
which yields

-1 ~ o —1 o~
limnf — log(E[e @ +er(1-2Sr—¢~S1)]) — liminf — log(E[e~@r+85m)]).

Now let (¢, ¢) be any admissible strategy for the original problem. Set @9 = ¢§_ — fot §tdg0t.
Then (¢°, ) is a self-financing strategy for S with g% > ¢". We have

-1 _ -1 ~ ~
lim inf — log(Ble~ (¢4 +#r(1-081)=¢"S0)]) < lim inf — log(Ble (% F¢r50)])

_1 ~0 |~ . Q
< Tims —a(pr+e1ST)
< hTHi}oréf T log(FEle T 1)

—1 - .
= lim inf — log( Ele~ @ +8r(1-X)Sr)—¢7S1)])

We conclude that the strategy 7 is long-term optimal with the equivalent annuity 3.

Exercise sheets and further information are also available on:
http://www.math.ethz.ch/education/bachelor/lectures/hs2015/math/mf/



