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Solution 4-1

Writing Xt := (µ− r)t+ σWt + Jt, we see that

dSt = St−dXt.

Hence, S is the stochastic exponential given by

St = S0E(X)t

= S0 exp

(
Xt −

1

2
[X]t

) ∏
0<s≤t

(1 + ∆Xs) exp

(
−∆Xs +

1

2
(∆Xs)

2

)
with ∆Xs = Xs −Xs− and

[X]t = 〈Xc, Xc〉t +
∑

0<s≤t
(∆Xs)

2,

where Xc denotes the continuous local martingale part of X. Therefore,

exp

(
Xt −

1

2
[X]t

) ∏
0<s≤t

exp

(
−∆Xs +

1

2
(∆Xs)

2

)
= exp

((
µ− r − 1

2
σ2
)
t+ σWt

)
.

On the other hand, ∏
0<s≤t

(1 + ∆Xs) =

Nt∏
i=1

Yi = exp

(
Nt∑
i=1

log(Yi)

)
.

Then J̃t :=
∑Nt

i=1 log(Yi) is a compound Poisson process so that

X̃t =

(
µ− r − 1

2
σ2
)
t+ σWt + J̃t

is a Levy process.

Solution 4-2

a) d 〈B,W 〉t = ρdt because d 〈W,W ′〉t = 0 and

〈S, Y 〉t =

〈∫
σ(u, Su, Yu)dWu,

∫
a(u, Yu)dBu

〉
t

=

∫ t

0
σ(u, Su, Yu)a(u, Yu)d 〈W,B〉u =

∫ t

0
σ(u, Su, Yu)a(u, Yu)ρdu.



b) Following the lecture notes Q ∼ P has a density process ZQ which has a continuous
version. Defining LQ by

LQ =

∫
1

ZQ
dZQ

we have ZQ = ZQ0 E(LQ). By a general version of Kunita-Watanabe decomposition LQ is
in our case given by

LQ =

∫
γQσdW +NQ

with NQ ∈ M0,loc(P ) and
〈
NQ,

∫
σdW

〉
= 0. By Bayes’ rule Q is an ELMM for S iff

ZQS ∈Mloc(P ). Thus by the product rule we obtain

d(ZQt St) = ZQt σtdWt + StdZ
Q
t + ZQt

(
µtdt+ d

〈
LQ,

∫
σdW

〉
t

)
= ZQt σtdWt + StdZ

Q
t + ZQt

(
µtdt+ γQσ2dt

)
,

yielding ZQS ∈ Mloc(P ) if and only if γQ = − µt
σ2
t
. Therefore the equivalent local martin-

gale measures Q are parametrized via

ZQ

ZQ0
= E

(
−
∫
µ

σ
dW +NQ

)
.

Since the filtration is generated by (W,W ′) we can apply the martingale representation
theorem to write NQ as

NQ =

∫
ψdW +

∫
νdW ′,

where ψ and ν are some predictable processes. As
〈
NQ,

∫
σdW

〉
= 0, it follows that ψ = 0

such that we finally obtain

ZQ

ZQ0
= E

(
−
∫
λdW +

∫
νdW ′

)
where λ = µ/σ and ν is some predictable process.

c) We want to change the measure, so we must assume that ν is sufficiently nice, for instance
that it satisfies Novikov’s condition

E
[
e

1
2

∫ T
0 ν2t dt

]
<∞.

By Girsanov, (WQ,W ′Q), defined by WQ = W +
∫
λdt and W ′Q = W ′ −

∫
νdt is a

2-dimensional Q-Brownian motion. Plugging this into the SDE’s

dS = µdt+ σ(dWQ − λdt) = (µ− λσ)dt+ σdWQ

and

dY = bdt+ aρ(dWQ − λdt) + a
√

1− ρ2(dW ′Q + νdt)

= (b+ a(
√

1− ρ2ν − ρλ))dt+ adBQ

for the Q-Brownian motion BQ = ρWQ
t +

√
1− ρ2W ′Qt .



Solution 4-3

a) To show convexity of C(x), let X1, X2 ∈ C(x) and λ ∈]0, 1[. Then,

sup
Y ∈D

E[Y (λX1 + (1− λ)X2)] ≤ λ sup
Y ∈D

E[Y X1] + (1− λ) sup
Y ∈D

E[Y X2]

≤ λx+ (1− λ)x = x,

and so λX1 +(1−λ)X2 ∈ C(x). To show closedness in L0
+(FT ), let (Xn)n∈N be a sequence

in C(x) converging in probability to some X ∈ L0
+(FT ). Then a subsequence, called again

(Xn)n∈N, converges P−a.s. to X. Hence, for each Y ∈ D, by Fatou’s lemma,

E[Y X] ≤ lim inf
n→∞

E[Y Xn] ≤ x.

Since D contains strictly positive random variables (e.g. the densities of equivalent σ-
martingale measures), this implies that X ∈ L0(FT ). Now, taking the supremum over D
gives X ∈ C(x).

b) It suffices to show that E[U(·)] is continuous from below, i.e., that EU(Xn) ↑ EU(X) as
Xn ↑ X in P in C(x). Without loss of generality, we may assume that U−(Xn) ∈ L1(P )
for all n ∈ N. By (a), C(x) is convex and closed, and since P << Q and

lim
n→∞

sup
XT∈C(x)

Q(|XT | > n) ≤ lim
n→∞

sup
H∈A

Q(|(H · S)T | > n) = 0,

it is also bounded. So, we may apply Komlos’ lemma (see e.g. W. Schahermayer, Op-
timal Investment in Incomplete Financial Markets, Lemma 3.3.): there exists a sequence

(X̃n)n∈N with X̃n ∈ conv(Xn, Xn+1, . . .) such that X̃n converges P -a.s., and a fortiori in

probability, to some FT -measurable random variable X̂ taking values in [0,∞]. By con-

vexity of C(x), X̃n ∈ C(x) for all n ∈ N, and by closedness of C(x) in L0
+(FT ), X̂ ∈ C(x).

Now, uniform integrability of U+(C(x)) (which follows from the assumption u(x) < ∞)
gives

lim
n→∞

E[U+(X̃n)] = E[U+(X̂)],

while Fatou’s lemma gives

lim inf
n→∞

E[U−(X̃n)] ≥ E[U−(X̂)].

Moreover, since E[U(·)] is concave and increasing and (Xn)n∈N is increasing, we have

E[U(X̃n)] = E[U(λn1X
n + λn2X

n+1 · · · )] ≥ λn1E[U(Xn)] + λn2E[U(Xn+1) · · ·
≥ inf

m≥n
E[U(Xm)] = E[U(Xn)], n ∈ N.

Putting everything together gives

E[U(X̂)] ≥ lim inf
n→∞

E[U(X̃n)] ≥ lim inf
n→∞

E[U(Xn)] = E[U(x)].

In particular, if we choose Xn ∈ {X ∈ C(x) : 1/n ≤ u(x)−E[U(X)] ≤ 1/(n− 1)}, n ∈ N,

we see that u(x) is attained for some X̂ ∈ C(x).



c) Choose r > 1 small enough that p := 1
rb > 1. We show that U+(C(x)) is bounded in Lr(P )

and hence uniformly integrable. To this end, by the assumption on U+, it suffices to show
that

sup
X∈C(x)

E[(Xb)r] = sup
X∈C(x)

E[X1/p] <∞.

Let q > 1 be the exponent conjugate to p. Then, by Hölder’s inequality, by the hint of

part (a), and by the fact that
(
dQ
dP

)−1
has moments of all orders, for each X ∈ C(x),

E[X1/p] = E

[(
X
dQ

dP

)1/p(dQ
dP

)−1/p]
≤
(
E

[
X
dQ

dP

])1/p
(
E

[(
dQ

dP

)−q/p])1/q

≤ x1/p
(
E

[(
dQ

dP

)−q/p])1/q

<∞.

Taking the supremum over C(x) establishes the claim.

Solution 4-4

Denote by Z = (Zt)t∈[0,T ] the density process of Q with respect to P .

a) The second claim follows immediately from the first claim together with the fact that

yZT = y dQdP ∈ D(y) and the fact that the function V is decreasing. So it remains to show
the first claim. Seeking a contradiction, suppose there exists z ∈ D(y) such that A := {z >
yZT } has P [A] > 0. Set a = Q[A] > 0 and define the Q-martingale M = (Mt)t∈[0,T ] by
Mt := EQ[1A | Ft]. Then M is nonnegative and M0 = a by the fact that F0 is P -trivial.
Under Q, there exists admissible H such that M = a+H · S. It follows that MT ∈ C(a),
i.e., 1

aMT ∈ C(1). Now, on the one hand, by the definition of D(y),

E[
1

a
MT z] ≤ y i.e. E[MT z] ≤ ay.

On the other hand,
E[MTZT ] = EQ[MT ] = M0 = a.

Thus, we arrive at the contradiction

0 ≥ E[MT (z − yZT )] = E[1{z>yZT }(z − yZT )] > 0.

b) Note that 0 ≤ y0 < ∞ and v(y) < ∞ on ]y0,∞[. Moreover, recall that the function V is
strictly decreasing, strictly convex and continuous on ]0,∞[.

First, define the function g :]y0,∞[→ [−∞, 0] by

g(s) = E[ZTV
′(sZT )].

This is well defined as ZT ≥ 0 P -a.s. and V ′ < 0. Moreover, it is increasing as V ′ is
increasing. Thus if g(s0) > −∞ for some s0 > y0, it follows by dominated convergence
that it is continuous on [s0,∞).

Next, for y1, y2 ∈]y0,∞[, y1 < y2, the fundamental theorem of calculus gives

V (y1ZT )− V (y2ZT ) =

∫ y2

y1

ZTV
′(sZT )ds. (1)

Now, the left hand side of (1) is integrable by assumption. Thus, the right hand side is
so, too, and since V ′ < 0, the integrand on the right hand side is strictly negative, and
Fubini’s theorem gives

v(y2)− v(y1) =

∫ y2

y1

g(s)ds.



In particular, the function g is finite a.e. on ]y0,∞[, and thus continuous and finite on
]y0,∞[. Now the claim follows from the fundamental theorem of calculus.

c) First, by the hint of part (a) of the previous exercise X ∈ C(x) if and only if

sup
Y ∈D

E[XY ] ≤ x.

By part (a) of this exercise, this is equivalent to

E[XZT ] ≤ x.

Now, by part (b) and the choice of yx,

E[X̂ZT ] = E[−V ′(yxZT )ZT ] = −v′(yx) = x, i.e. U ′(X̂) = yxZT . (2)

We see that X̂ ∈ C(x).

Next, fix X ∈ C(x). We may assume without loss of generality that E[U(X)] > −∞. By

the fact that X̂ > 0 P -a.s. and U is in C1(]0,∞[) and strictly concave on ]0,∞[,

U(X)− U(X̂) ≤ U ′(X̂)(X − X̂),

where the equality is strict on {X 6= X̂}. Taking expectations, (2) yields

E[U(X)− U(X̂)] ≤ E[U ′(X̂)(X − X̂)] = yxE[ZT (X − X̂)] ≤ 0.

If X = X̂ P -a.s., then both inequalities are trivially equalities, and if P [X 6= X̂] > 0, then
the first inequality is strict.

Solution 4-5

The discounted stock price process S1 satisfies the SDE

dS1
t = S1

t ((µ− r)dt+ σdWt) = S1
t σ(λdt+ dWt),

where λ := µ−r
σ denotes the market price of risk. By the previous round exercise 3-1, there

exists a unique equivalent martingale measure Q ∼ P on FT given by

dQ

dP
= E(−λW )T .

Moreover, elementary analysis gives V (y) = 1−γ
γ y

− γ
1−γ and V ′(y) = −y−

1
1−γ .

a) Fix y > 0. Then by Exercise 4-4 (a) and the fact that E(aW ) is a P -martingale for all
a ∈ R,

v(y) = E

[
1− γ
γ

y
− γ

1−γ (E(−λW )T )
− γ

1−γ

]
=

1− γ
γ

y
− γ

1−γE

[
exp

(
λγ

1− γ
WT +

1

2

λ2γ

1− γ
T

)]
=

1− γ
γ

y
− γ

1−γ exp

(
1

2

λ2γ

(1− γ)2
T

)
E

[
E
(

λγ

1− γ
W

)
T

]
=

1− γ
γ

y
− γ

1−γ exp

(
1

2

λ2γ

(1− γ)2
T

)
<∞.



b) First, note that v(y) <∞ for some y ∈]0,∞[ implies that

u(x) ≤ v(y) + vx <∞, x ∈]0,∞[.

Next, fix x > 0. Then by Exercise 4-4 (b) and part (a),

X̂x = −V ′
(
yx
dQ

dP

)
= y

− 1
1−γ

x (E(−λW )T )
− 1

1−γ

= −v′(yx) exp

(
−1

2

λ2γ

(1− γ)2
T

)
exp

(
λ

1− γ
WT +

1

2

λ2

1− γ
T

)
= x exp

(
λ

1− γ
(WT + λT )− 1

2

λ2

(1− γ)2
T

)
= xE

(
λ

1− γ
R

)
T

.

c) Fix x > 0. By the definition of the stochastic exponential,

X̂ = x

(
1 +

∫ T

0
E
(

λ

1− γ
R

)
t

λ

1− γ
dRt

)
= x+

∫ T

0
xE
(

λ

1− γ
R

)
t

λ

1− γ
1

σSt
dSt.

This gives the first claim. Using again that E(aW ) is a P -martingale for all a ∈ R gives

u(x) = E
[
U(X̂x)

]
=
xγ

γ
E

[(
E
(

λ

1− γ
R

)
T

)γ]
=
xγ

γ
E

[
exp

(
λγ

1− γ
(WT + λT )− 1

2

λ2γ

(1− γ)2
T

)]
=
xγ

γ
exp

(
1

2

λ2γ

1− γ
T

)
E

[
E
(

λγ

1− γ
W

)
T

]
=
xγ

γ
exp

(
1

2

λ2γ

1− γ
T

)
.

This establishes the second claim.

Exercise sheets and further information are also available on:

http://www.math.ethz.ch/education/bachelor/lectures/hs2015/math/mf/


