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Writing Xy := (u — )t + oW, + Ji, we see that
dS; = Si—dX;.
Hence, S is the stochastic exponential given by
Sy = So€(X ),

_ Spexp (Xt _ ;[X]t) 11 (l—l—AXs)exp( AX, + (AX) )
0<s<t

with AX; = X, — X,_ and

[X]e = (X%, X9, + Y (AXL)?,
0<s<t
where X ¢ denotes the continuous local martingale part of X. Therefore,

exp(Xt— ) 11 eXp< AX 4 (AX))

0<s<t

1
= exp <(u—r— 20'2>t+0'Wt>.

H1+AX HY—eXp(Zlog )

0<s<t

On the other hand,

Then J; := 3. log(V;) is a compound Poisson process so that
5 1, .
X = u—r—§a t+ oW+ J;

is a Levy process.

Solution 4-2
a) d(B,W), = pdt because d (W, W'), =0 and

(S,Y), = </ (u, Su, Yy qu,/ a(u,Y,) dBu>

t
:/ o(u, Sy, Yu)a(u,Yy,) :/ o(u, Sy, Yu)a(u,Y,)pdu.
0

0



b)

Following the lecture notes @ ~ P has a density process Z% which has a continuous

version. Defining L% by
1
Q _ Q
L~ = / 7a dz

we have Z9 = Z(? E(L?). By a general version of Kunita-Watanabe decomposition L9 is
in our case given by

L° = /nyadW + N©@

with N9 ¢ Mo,10c(P) and <NQ,fadW> = 0. By Bayes’ rule Q is an ELMM for S iff
Z9S € My,.(P). Thus by the product rule we obtain

d(ZRSy) = Z20,dWy + SydZ8 + Z9 <Mdt +d <LQ, / o—dW> )
t
= Z20,dW; + S,dZ7° + Z2 (dt +~20?dt)

yvielding Z9S € M,o.(P) if and only if 4% = — 5. Therefore the equivalent local martin-
t

gale measures () are parametrized via

7Q
Q—s(-/“dWJrNQ).
Z¢ o

Since the filtration is generated by (W, W’) we can apply the martingale representation

theorem to write N9 as
N@ = /de+/ydW’,

where ¢ and v are some predictable processes. As <N Q i adW> = 0, it follows that ¥» =0

such that we finally obtain
79
:5<—/)\dW+/VdW’)
79
0

where A\ = p/o and v is some predictable process.

We want to change the measure, so we must assume that v is sufficiently nice, for instance
that it satisfies Novikov’s condition

T
E [e%fo ”Edt} < 00.

By Girsanov, (W? W'Q), defined by W@ = W + [Adt and W@ = W' — [vdt is a
2-dimensional -Brownian motion. Plugging this into the SDE’s
dS = pdt + o(dW? — \dt) = (u — Ao)dt + cdW?
and
dY = bdt + ap(dW® — Xdt) 4+ ar/1 — p2(dW'? + vdt)
= (b+a(y/1— p2v — p\))dt + adB®

for the Q-Brownian motion B9 = thQ +4/1 - p2Wt/Q.



Solution 4-3

a)

To show convexity of C(x), let X', X2 € C(x) and X €]0, 1[. Then,

sup E[Y(AX! + (1 — A)X?)] < Asup E[Y X' + (1 — ) sup B[V X2
YeD YeD YeD

<Az +(1—= Nz =z,

and so AX'+(1—X)X? € C(z). To show closedness in LY (Fr), let (X™),en be a sequence
in C(x) converging in probability to some X € L9r(.7-"T). Then a subsequence, called again
(X™)nen, converges P—a.s. to X. Hence, for each Y € D, by Fatou’s lemma,

EYX] <liminf EY X"] < z.

n—oo

Since D contains strictly positive random variables (e.g. the densities of equivalent o-
martingale measures), this implies that X € L°(Fr). Now, taking the supremum over D
gives X € C(x).

It suffices to show that E[U(-)] is continuous from below, i.e., that EU(X") 1 EU(X) as
X" 1 X in P in C(x). Without loss of generality, we may assume that U~ (X") € L}(P)
for all n € N. By (a), C(x) is convex and closed, and since P << @ and

lim sup Q(|X7|>n)< lim sup Q(|(H - S)r| >n) =0,
=00 X neC(x) n=0 Hec A

it is also bounded. So, we may apply Komlos’ lemma (see e.g. W. Schahermayer, Op-
timal Investment in Incomplete Financial Markets, Lemma 3.3.): there exists a sequence

(X™)nen with X™ € conv(X™, X1 ..} such that X" converges P-a.s., and a fortiori in
probability, to some Fp-measurable random variable X taking values in [0, c0]. By con-
vexity of C(z), X™ € C(z) for all n € N, and by closedness of C(z) in LY (Fr), X € C(z).

Now, uniform integrability of U (C(x)) (which follows from the assumption u(z) < oo)
o Jim B[U*(X™)] = E[UF(X)),
while Fatou’s lemma gives

liminf E[U~(X")] > E[U(X)].

n—oo
Moreover, since E[U(+)] is concave and increasing and (X™),en is increasing, we have

E[U(X™)] = E[UN X"+ X3 X" )] > ME[U(X™)] + ME[U(X™)- -
> inf B[UX™)] = EU(X")], neN.

Putting everything together gives

E[U(X)] > liminf B[U(X™)] > liminf E[U(X™)] = E[U(z)].

n—o0 n—oo

In particular, if we choose X™ € {X € C(x) : 1/n <wu(z) — E[U(X)] <1/(n—1)},n € N,
we see that u(x) is attained for some X € C(x).



)

Choose 7 > 1 small enough that p := X > 1. We show that U"(C(x)) is bounded in L"(P)
and hence uniformly integrable. To this end, by the assumption on U™, it suffices to show
that
sup E[(X®)"] = sup E[X'?] < co.
XeC(x) Xec(x)

Let ¢ > 1 be the exponent conjugate to p. Then, by Holder’s inequality, by the hint of
-1
part (a), and by the fact that <%> has moments of all orders, for each X € C(x),

() (35) =l (e[ )
< 2l (E (;g>_”p]) e

Taking the supremum over C(z) establishes the claim.

E[XY/?=E

Solution 4-4

Denote by Z = (Z)ejo,r) the density process of Q) with respect to P.

a)

The second claim follows immediately from the first claim together with the fact that

yZp = yj—g € D(y) and the fact that the function V is decreasing. So it remains to show
the first claim. Seeking a contradiction, suppose there exists z € D(y) such that A := {z >
yZr} has P[A] > 0. Set a = Q[A] > 0 and define the Q-martingale M = (My)c(o,7) by
M; := Eg[l4 | ). Then M is nonnegative and My = a by the fact that Fy is P-trivial.
Under @), there exists admissible H such that M =a+ H - S. It follows that My € C(a),
i.e., 1My € C(1). Now, on the one hand, by the definition of D(y),

1
E[-Mrz] <yie. E[Mrpz] < ay.
a
On the other hand,
E[MrZz] = Eg[Myr] = My = a.

Thus, we arrive at the contradiction

0> E[Mr(z —yZr)| = E[l{;5yz,1 (2 — yZ7)] > 0.

Note that 0 < yp < oo and v(y) < oo on |yo, 0o[. Moreover, recall that the function V is
strictly decreasing, strictly convex and continuous on |0, ool.

First, define the function g :|yg, oco[— [—o0, 0] by
g(s) = E[Z7V'(sZ7)).

This is well defined as Z7 > 0 P-a.s. and V' < 0. Moreover, it is increasing as V' is
increasing. Thus if g(sg) > —oco for some sy > yo, it follows by dominated convergence
that it is continuous on [sg, 00).

Next, for y1,y2 €]yo, 0, y1 < Y2, the fundamental theorem of calculus gives

V(y1Zr) = V(y22Zr) = /y2 ZrV'(sZr)ds. (1)

el

Now, the left hand side of (1) is integrable by assumption. Thus, the right hand side is
so0, too, and since V' < 0, the integrand on the right hand side is strictly negative, and
Fubini’s theorem gives

v(y2) —v(y1) = /y2 g(s)ds.

Y1



In particular, the function ¢ is finite a.e. on Jyp, o[, and thus continuous and finite on
Jyo, 00[. Now the claim follows from the fundamental theorem of calculus.

c¢) First, by the hint of part (a) of the previous exercise X € C(x) if and only if

sup E[XY] < z.
YeD

By part (a) of this exercise, this is equivalent to
E[XZr] < x.
Now, by part (b) and the choice of y,,
E(X Zr) = E[-V'(y2Zr) Zr] = =V (y) = =, ie. U'(X) = yaZr. (2)

We see that X € C(x).

Next, fix X € C(x). We may assume without loss of generality that E[U(X)] > —oo. By
the fact that X > 0 P-a.s. and U is in C*(]0, 0o[) and strictly concave on ]0, ool

U(X) = UX) <U' X)X - X),
where the equality is strict on {X # X }. Taking expectations, (2) yields
E[U(X) - U(X)] < E[U'(X)(X - X)] = w.E[Zr(X - X)] <0.

X=X P-a.s., then both inequalities are trivially equalities, and if P[X # X | > 0, then
the first inequality is strict.

Solution 4-5
The discounted stock price process S' satisfies the SDE
ds} = SH((u — r)dt + odW;) = Slo(Adt 4 dWy),

where A\ := £-= denotes the market price of risk. By the previous round exercise 3-1, there
exists a unique equivalent martingale measure () ~ P on Fr given by

aQ _

5 = (AW

1
Moreover, elementary analysis gives V (y) = 1_7711_% and V'(y) = —y 7.

a) Fix y > 0. Then by Exercise 4-4 (a) and the fact that £(aW) is a P-martingale for all
a € R,

1—~ _ o Ly
v<y>=E[77y 5 (E(-AW)p) ]
_ 2
:71 ’Yy_%E [exp </\Py VVT—i-1 ATy T)]
¥ v
e (5pt) (7))
=—vy vexp| =T | E|E( ——W
v Y 2(1—7)2 L=y Jop

l—y _ 2 IS
= Jy = exp (7)2T> < o0.
2




b) First, note that v(y) < oo for some y €]0, oo[ implies that
u(z) <v(y) +vr < oo, x€]0,00].

Next, fix > 0. Then by Exercise 4-4 (b) and part (a),

. d S 1
Xg = -V’ <y$dg> =Yz K (5(_>‘W)T) =y

1 Ay A 1 A2
—v' (Y ———=T — — T
vl )eXp< 2(1—7)? )eXp<1—7WT+21—v >
A 1 A2
= — AN — ———=T
xeXp<1—v(WT+ ) 2(1—7)? >
A
- <R> .
1—7 T
¢) Fix > 0. By the definition of the stochastic exponential,
T
> A A
foa(ie [e( R) in)
0 1-—
:m+/ :US<
0

This gives the first claim. Using again that £(aW) is a P-martingale for all a € R gives

sa-ep]- 2o f(25) )
:JjE[e}‘p< s Wan) 5 )
2 () e (2w
::L:;exp (;ﬁ”vT).

This establishes the second claim.

1 _W—Stdst

Exercise sheets and further information are also available on:
http://www.math.ethz.ch/education/bachelor/lectures/hs2015/math/mf/



