
Optimal Investment inIncomplete Financial MarketsWalter Schachermayer�October 30, 2000AbstractWe give a review of classical and recent results on maximization ofexpected utility for an investor who has the possibility of trading in a�nancial market. Emphasis will be given to the duality theory relatedto this convex optimization problem.For expository reasons we �rst consider the classical case where theunderlying probability space 
 is �nite. This setting has the advantagethat the technical di�culties of the proofs are reduced to a minimum,which allows for a clearer insight into the basic ideas, in particular thecrucial role played by the Legendre-transform. In this setting we stateand prove an existence and uniqueness theorem for the optimal invest-ment strategy, and its relation to the dual problem; the latter consistsin �nding an equivalent martingale measure optimal with respect to theconjugate of the utility function. We also discuss economic interpreta-tions of these theorems.We then pass to the general case of an arbitrage-free �nancial marketmodeled by an Rd -valued semi-martingale. In this case some regularityconditions have to be imposed in order to obtain an existence resultfor the primal problem of �nding the optimal investment, as well as fora proper duality theory. It turns out that one may give a necessaryand su�cient condition, namely a mild condition on the asymptoticbehavior of the utility function, its so-called reasonable asymptotic elas-ticity. This property allows for an economic interpretation motivatingthe term \reasonable". The remarkable fact is that this regularity con-dition only pertains to the behavior of the utility function, while wedo not have to impose any regularity conditions on the stochastic pro-cess modeling the �nancial market (to be precise: of course, we haveto require the arbitrage-freeness of this process in a proper sense; alsowe have to assume in one of the cases considered below that this pro-cess is locally bounded; but otherwise it may be an arbitrary Rd -valuedsemi-martingale).�Support by the Austrian Science Foundation (FWF) under grant SFB#010 and Z36-MAT and the Austrian Nationalbank under grant Jubil�aumsfond 8699.1



We state two general existence and duality results pertaining to thesetting of optimizing expected utility of terminal consumption. Wealso survey some of the rami�cations of these results allowing for in-termediate consumption, state-dependent utility, random endowment,non-smooth utility functions and transaction costs.Key words: Optimal Portfolios, Incomplete Markets, Replicating Portfolios,No-arbitrage bounds, Utility Maximization, Asymptotic Elasticity of UtilityFunctions.JEL classi�cation: C60, C 61, G11, G12, G13AMS classi�cation: 60G44, 60G48, 60H05, 90C26, 90C48, 90C901 IntroductionA basic problem of mathematical �nance is the problem of an economic agent,who invests in a �nancial market so as to maximize the expected utility of herterminal wealth. As we shall see in (16) below, this problem can be written inan abstract way as E �U �x+ Z T0 HudSu�� �! max!; (1)where we optimize over all \admissible" trading strategies H. In the frame-work of a continuous-time model the problem was studied for the �rst time byR. Merton in two seminal papers [M69] and [M71] (see also [M90] as well as[S 69] for a treatment of the discrete time case). Using the methods of stochas-tic optimal control Merton derived a non-linear partial di�erential equation(Bellman equation) for the value function of the optimization problem. Healso produced the closed-form solution of this equation, when the utility func-tion is a power function, the logarithm, or of the form �e�x for  > 0.The Bellman equation of stochastic programming is based on the assump-tion of Markov state processes. The modern approach to the problem ofexpected utility maximization, which permits us to avoid the assumption ofMarkovian asset prices, is based on duality characterizations of portfolios pro-vided by the set of martingale measures. For the case of a complete �nancialmarket, where the set of martingale measures is a singleton, this \martingale"methodology was developed by Pliska [P 86], Cox and Huang [CH89], [CH91]and Karatzas, Lehoczky and Shreve [KLS 87]. It was shown that the marginalutility of the terminal wealth of the optimal portfolio is proportional to thedensity of the martingale measure; this key result naturally extends the classi-cal Arrow-Debreu theory of an optimal investment derived in a one-step, �niteprobability space model.Considerably more di�cult is the case of incomplete �nancial models. Itwas studied in a discrete-time, �nite probability space model by He and Pear-son [HP91], and, in a continuous-time di�usion model, by He and Pearson2



[HP91a], and by Karatzas, Lehoczky, Shreve and Xu in their seminal paper[KLSX91]. The central idea here is to solve a dual variational problem andthen to �nd the solution of the original problem by convex duality, the latterstep being similar as in the case of a complete model.We now formally assemble the ingredients of the optimization problem.We consider a model of a security market which consists of d + 1 assets.We denote by S = ((Sit)0�t�T )0�i�d the price process of the d stocks andsuppose that the price of the asset S0, called the \bond" or \cash account",is constant, S0t � 1. The latter assumption does not restrict the generality ofthe model as we always may choose the bond as num�eraire (c.f., [DS 95]). Inother words, ((Sit)0�t�T )1�i�d, is an Rd -valued semi-martingale modeling thediscounted price process of d risky assets.The process S is assumed to be a semimartingale based on and adapted toa �ltered probability space (
;F ; (Ft)0�t�T ;P) satisfying the usual conditionsof saturatedness and right continuity. As usual in mathematical �nance, weconsider a �nite horizon T , but we remark that our results can also be extendedto the case of an in�nite horizon.In section 2 we shall consider the case of �nite 
, in which case the pathsof S are constant except for jumps at a �nite number of times. We then canwrite S as (St)Tt=0 = (S0; S1; : : : ; ST ), for some T 2 N .The assumption that the bond is constant is mainly chosen for notationalconvenience as it allows for a compact description of self-�nancing portfolios: aself-�nancing portfolio � is de�ned as a pair (x;H), where the constant x is theinitial value of the portfolio and H = (H i)1�i�d is a predictable S-integrableprocess specifying the amount of each asset held in the portfolio. The valueprocess X = (Xt)0�t�T of such a portfolio � at time t is given byXt = X0 + Z t0 HudSu; 0 � t � T; (2)where X0 = x and the integral refers to stochastic integration in Rd .In order to rule out doubling strategies and similar schemes generatingarbitrage-pro�ts (by going deeply into the red) we follow Harrison and Pliska([HP81], see also [DS 94]), calling a predictable, S-integrable process admissi-ble, if there is a constant C 2 R + such that, almost surely, we have(H �S)t := Z t0 HudSu � �C; for 0 � t � T: (3)Let us illustrate these general concepts in the case of an Rd -valued processS = (St)Tt=0 in �nite, discrete time adapted to the �ltration (Ft)Tt=0. In thiscase each Rd -valued process (Ht)Tt=1, which is predictable (i.e. each Ht is Ft�1-measurable), is S-integrable, and the stochastic integral reduces to a �nite
3



sum (H �S)t = Z t0 HudSu (4)= tXu=1Hu�Su (5)= tXu=1Hu(Su � Su�1); (6)whereHu�Su denotes the inner product of the vectorsHu and �Su = Su�Su�1in Rd . Of course, each such trading strategy H is admissible if the underlyingprobability space 
 is �nite.Passing again to the general setting of an Rd -valued semi-martingaleS = (St)0�t�T we denote as in [KS 99] by Me(S) (resp. Ma(S)) the set ofprobability measures Q equivalent to P (resp. absolutely continuous with re-spect to P) such that for each admissible integrand H, the process H �S is alocal martingale under Q.Throughout the paper we assume the following version of the no-arbitragecondition on S:Assumption 1.1 The set Me(S) is not empty.1We note that in this paper we shall mainly be interested in the case whenMe(S) is not reduced to a singleton, i.e., the case of an incomplete �nancialmarket.After having speci�ed the process S modeling the �nancial market we nowde�ne the function U(x) modeling the utility of an agent's wealth x at theterminal time T .We make the classical assumptions that U : R ! R [ f�1g is increasingon R, continuous on fU > �1g, di�erentiable and strictly concave on theinterior of fU > �1g, and that marginal utility tends to zero when wealthtends to in�nity, i.e., U 0(1) := limx!1U 0(x) = 0: (7)1If follows from [DS 94] and [DS 98a] that Assumption 1.1 is equivalent to the conditionof \no free lunch with vanishing risk". This property can also be equivalently characterisedin terms of the existence of a measure Q � P such that the process S itself (rather than theintegralsH�S for admissible integrands) is \something like a martingale". The precise notionin the general semi-martingale setting is that S is a sigma-martingale under Q (see [DS 98a]);in the case when S is locally bounded (resp. bounded) the term \sigma-martingale" may bereplaced by the more familiar term \local martingale" (resp. \martingale").Readers who are not too enthusiastic about the rather subtle distinctions between mar-tingales, local martingales and sigma-martingales may �nd some relief by noting that, in thecase of �nite 
, or, more generally, for bounded processes, these three notions coincide. Alsonote that in the general semi-martingale case, when S is locally bounded (resp. bounded),the set Me(S) as de�ned above coincides with the set of equivalent measures Q � P suchthat S is a local martingale (resp. martingale) under Q (see [E 80] and [AS 94]).4



These assumptions make good sense economically and it is clear that therequirement (7) of marginal utility decreasing to zero, as x tends to in�nity, isnecessary, if one is aiming for a general existence theorem for optimal invest-ment. Indeed, if U 0(1) > 0, then even in the case of the Black-Scholes modelthe solution to the optimization problem (1) fails to exist.As regards the behavior of the (marginal) utility at the other end of thewealth scale we shall distinguish throughout the paper two cases.Case 1 (negative wealth not allowed): in this setting we assume that Usati�es the conditions U(x) = �1, for x < 0, while U(x) > �1, for x > 0,and that U 0(0) := limx&0U 0(x) =1: (8)Case 2 (negative wealth allowed): in this case we assume that U(x) >�1, for all x 2 R, and thatU 0(�1) := limx&�1U 0(x) =1: (9)Typical examples for case 1 areU(x) = ln(x) (10)or U(x) = x�� ; 0 < � < 1; (11)whereas a typical example for case 2 isU(x) = �e�x;  > 0: (12)We again note that it is natural from economic considerations to requirethat the marginal utility tends to in�nity when the wealth x tends to thein�mum of its allowed values.For later reference we summarize our assumptions on the utility function:Assumption 1.2 Throughout the paper the utility function U : R ! R [f�1g is increasing on R, continuous on fU > �1g, di�erentiable and strictlyconcave on the interior of fU > �1g, and satis�esU 0(1) := limx!1U 0(x) = 0: (13)Denoting by dom(U) the interior of fU > �1g, we assume that we haveone of the two following cases.Case 1: dom(U) =]0;1[ in which case U satis�es the conditionU 0(0) := limx&0U 0(x) =1: (14)Case 2: dom(U) = R in which case U satis�esU 0(�1) := limx&�1U 0(x) =1: (15)5



We now can give a precise meaning to the expression (1) at the beginningof this section. De�ne the value functionu(x) := supH2H E [U(x + (H �S)T )] ; x 2 dom(U); (16)where H ranges through the admissible S-integrable trading strategies. Toexclude trivial cases we shall assume throughout the paper that the valuefunction u is not degenerate:Assumption 1.3u(x) < sup� U(�); for some x 2 dom(U): (17)One easily veri�es that this assumption implies thatu(x) < sup� U(�); for all x 2 dom(U); (18)and that, in the case of �nite 
, Assumptions 1.1 and 1.2 already imply As-sumption 1.3. We also note that, under Assumption 1.1 and 1.2, case 1, the(formally weaker) requirement u(x) <1, for some x 2 dom(U) implies already(17) (compare [KS 99] and [S 00, Remark3.7]).2 Utility Maximization on Finite ProbabilitySpacesIn this section we consider an Rd+1 -valued process (St)Tt=0 = (S0t ; S1t ; : : : ; Sdt )Tt=0with S0t � 1, based on and adapted to the �nite �ltered probability space(
;F ; (Ft)Tt=0;P), which we write as 
 = f!1; : : : ; !Ng. Without loss of gen-erality we assume that F0 is trivial, that FT = F is the power set of 
, andthat P[!n] > 0, for all 1 � n � N .Assumption 1.1 is the existence a measure Q � P, i.e., Q[!n] > 0, for1 � n � N , such that S is a Q-martingale.2.1 The complete case (Arrow-Debreu)As a �rst case we analyze the situation of a �nancial market which is complete,i.e., the set Me(S) of equivalent probability measures under which S is amartingale is reduced to a singleton fQg. In this setting consider the Arrow-Debreu assets 1f!ng, which pay 1 unit of the num�eraire at time T , when !nturns out to be the true state of the world, and 0 otherwise. In view of ournormalization of the num�eraire S0t � 1, we get for the price of the Arrow-Debreu assets at time t = 0 the relationEQ �1f!ng� = Q[!n]; (19)6



and each Arrow-Debreu asset 1f!ng may be represented as 1f!ng = Q[!n] +(H �S)T , for some predictable trading strategy H 2 H.Hence, for �xed initial endowment x 2 dom(U), the utility maximizationproblem (16) above may simply be written asEP [U(XT )] = NXn=1 pnU(�n)! max! (20)EQ [XT ] = NXn=1 qn�n � x: (21)To verify that (20) and (21) indeed are equivalent to the original problem(16) above (in the present �nite, complete case). Note that a random variableXT (!n) = �n can be dominated by a random variable of the form x+(H�S)T =x + PTt=1Ht�St i� EQ [XT ] = PNn=1 qn�n � x. This basic relation has aparticularly evident interpretation in the present setting, as qn is simply theprice of the Arrow-Debreu asset 1f!ng.Let us �x some notation for the domain over which the problem (20) isoptimized: C(x) = �XT 2 L0(
;FT ;P) : EQ [XT ] � x	 : (22)The notation L0(
;FT ;P) only serves to indicate thatXT is an FT -measurablerandom variable at this stage, as for �nite 
 all the Lp-spaces coincide. But wehave chosen the notation to be consistent with that of the general case below.We have written �n for XT (!n) to stress that (20) simply is a concavemaximization problem in RN with one linear constraint. To solve it, we formthe LagrangianL(�1; : : : ; �N ; y) = NXn=1 pnU(�n)� y NXn=1 qn�n � x! (23)= NXn=1 pn �U(�n)� y qnpn �n� + yx: (24)We have used the letter y � 0 instead of the usual � � 0 for the Lagrangemultiplier; the reason is the dual relation between x and y which will becomeapparent in a moment.Writing �(�1; : : : ; �N) = infy>0L(�1; : : : ; �N ; y); �n 2 dom(U); (25)and 	(y) = sup�1;::: ;�N L(�1; : : : ; �N ; y); y � 0; (26)7



it is straight forward to verify that we havesup�1;::: ;�N �(�1; : : : ; �N) = sup�1;::: ;�NPNn=1 qn�n�x NXn=1 pnU(�n) = u(x): (27)As regards the function 	(y) we make the following pleasant observationwhich is the basic reason for the e�ciency of the duality approach: usingthe form (24) of the Lagrangian and �xing y > 0, the optimization problemappearing in (26) splits into N independent optimization problems over RU(�n)� y qnpn �n 7! max!; �n 2 R: (28)In fact, these one-dimensional optimization problems are of a very conve-nient form: recall (see, e.g., [R 70], [ET76] or [KLSX91]) that, for a concavefunction U : R ! R [ f�1g, the conjugate function V (which | up to thesign | is just the Legendre-transform) is de�ned byV (�) = sup�2R [U(�)� ��] ; � > 0: (29)The following facts are well known (and easily veri�ed by one-dimensionalcalculus): if U satis�es Assumption 1.2, we have that V is �nitely valued,di�erentiable, strictly convex on ]0;1[, and satis�esV 0(0) := limy&0V 0(y) = �1; V (0) := limy&0V (y) = U(1): (30)As regards the behavior of V at in�nity, we have to distinguish betweencase 1 and case 2 in Assumption 1.2 above:case 1: limy!1V (y) = limx!0U(x) and limy!1V 0(y) = 0 (31)case 2: limy!1V (y) =1 and limy!1V 0(y) =1 (32)We also note that these properties of the conjugate function V are, in fact,equivalent to the properties of U listed in Assumption 1.2. We also have theinversion formula to (29)U(�) = inf� [V (�) + ��] ; � 2 dom(U) (33)and that �V 0(y), denoted by I(y) for \inverse function" in [KLSX91], is theinverse function of U 0(x); of course, U 0 has a good economic interpretation asthe marginal utility of an economic agent modeled by the utility function U .Here are some concrete examples of pairs of conjugate functions:U(x) = ln(x); x > 0; V (y) = � ln(y)� 1; (34)U(x) = x�� ; x > 0; V (y) = 1��� y ���1 ; 0 < � < 1; (35)U(x) = � e�x ; x 2 R; V (y) = y (ln(y)� 1);  > 0: (36)8



We now apply these general facts about the Legendre transformation tocalculate 	(y). Using de�nition (29) of the conjugate function V and (24),formula (26) becomes 	(y) = NXn=1 pnV �y qnpn� + yx (37)= EP �V �y dQdP��+ yx: (38)Denoting by v(y) the dual value functionv(y) := EP �V �y dQdP�� = NXn=1 pnV �y qnpn� ; y > 0; (39)the function v clearly has the same qualitative properties as the function Vlisted above. Hence by (30), (31), and (32) we �nd, for �xed x 2 dom(U), aunique by = by(x) > 0 such that v0(by(x)) = �x, which therefore is the uniqueminimizer to the dual problem	(y) = EP �V �y dQdP��+ yx = min! (40)Fixing the critical value by(x) of the Lagrange multiplier, the concave func-tion (�1; : : : ; �N) 7! L(�1; : : : ; �N ; by(x)) (41)de�ned in (24) assumes its unique maximum at the point (b�1; : : : ; b�N) satisfyingU 0(b�n) = by(x) qnpn or, equivalently, b�n = I �by(x) qnpn� ; (42)so that we have infy>0	(y) = infy>0 (v(y) + xy) (43)= v(by(x)) + xby(x) (44)= L(b�1; : : : ; b�N ; by(x)): (45)Note that b�n are in dom(U), for 1 � n � N , so that L is continuously di�eren-tiable at (b�1; : : : ; b�N ; by(x)), which implies that @@yL(�1; : : : ; �N ; y)j(b�1;::: ;b�N ;by(x)) =0; hence we infer from (23) and the fact that by(x) > 0 that the constraint (21)is binding, i.e., NXn=1 qnb�n = x; (46)and that NXn=1 pnU(b�n) = L(b�1; : : : ; b�N ; by(x)): (47)9



In particular, we obtain thatu(x) = NXn=1 pnU(b�n): (48)Indeed, the inequality u(x) �PNn=1 pnU(b�n) follows from (46) and (27), whilethe reverse inequality follows from (47) and the fact that for all �1; : : : ; �Nverifying the constraint (21)NXn=1 pnU(�n) � L(�1; : : : ; �N ; by(x)) � L(b�1; : : : ; b�N ; by(x)): (49)We shall write bXT (x) 2 C(x) for the optimizer bXT (x)(!n) = b�n, n = 1; : : : ; N .Combining (43), (47) and (48) we note that the value functions u and vare conjugate:infy>0 (v(y) + xy) = v(by(x)) + xby(x) = u(x); x 2 dom(U); (50)which, by the remarks after equations (32) and (39), implies that u inherits theproperties of U listed in Assumption 1.2. The relation v0(by(x)) = �x whichwas used to de�ne by(x), therefore translates intou0(x) = by(x); for x 2 dom(U): (51)Let us summarize what we have proved:Theorem 2.1 (�nite 
, complete market) Let the �nancial market S =(St)Tt=0 be de�ned over the �nite �ltered probability space (
;F ; (F)Tt=0;P) andsatisfy Me(S) = fQg, and let the utility function U satisfy Assumption 1.2.Denote by u(x) and v(y) the value functionsu(x) = supXT2C(x) E [U(XT )]; x 2 dom(U); (52)v(y) = E �V �y dQdP�� ; y > 0: (53)We then have:(i) The value functions u(x) and v(y) are conjugate and u inherits the qual-itative properties of U listed in Assumption 1.2.(ii) The optimizer bXT (x) in (52) exists, is unique and satis�esbXT (x) = I(y dQdP); or, equivalently, y dQdP = U 0( bXT (x)); (54)where x 2 dom(U) and y > 0 are related via u0(x) = y or, equivalently,x = �v0(y). 10



(iii) The following formulae for u0 and v0 hold true:u0(x) = EP [U 0( bXT (x))]; v0(y) = EQ �V 0 �y dQdP�� (55)xu0(x) = EP h bXT (x)U 0( bXT (x))i ; yv0(y) = EP �y dQdPV 0 �y dQdP�� :(56)Proof Items (i) and (ii) have been shown in the preceding discussion, hencewe only have to show (iii). The formulae for v0(y) in (55) and (56) immediatelyfollow by di�erentiating the relationv(y) = EP �V �y dQdP�� = NXn=1 pnV �y qnpn� : (57)Of course, the formula for v0 in (56) is an obvious reformulation of the onein (55). But we write both of them to stress their symmetry with the formulaefor u0(x).The formula for u0 in (55) translates via the relations exhibited in (ii) intothe identity y = EP �y dQdP� ; (58)while the formula for u0(x) in (56) translates intov0(y)y = EP �V 0 �y dQdP� y dQdP� ; (59)which we just have seen to hold true.Remark 2.2 Firstly, let us recall the economic interpretation of (54)U 0 � bXT (x)(!n)� = y qnpn ; n =; : : : ; N: (60)This equality means that, in every possible state of the world !n, the marginalutility U 0( bXT (x)(!n)) of the wealth of an optimally investing agent at time Tis proportional to the ratio of the price qn of the corresponding Arrow-Debreusecurity 1f!ng and the probability of its success pn = P[!n]. This basic relationwas analyzed in the fundamental work of K. Arrow and G. Debreu and allowsfor a convincing economic interpretion: considering for a moment the situationwhere this proportionality relation fails to hold true, one immediately deducesfrom a marginal variation argument that the investment of the agent cannotbe optimal. Hence for the optimal investment the proportionality must holdtrue. The above result also identi�es the proportionality factor as y = u0(x),where x is the initial endowment of the investor.Theorem 2.1 indicates an easy way to solve the utility maximization athand: calculate v(y) by (53), which reduces to a simple one-dimensional com-putation; once we know v(y), the theorem provides easy formulae to calculateall the other quantities of interest, e.g., bXT (x), u(x), u0(x) etc.11



Another message of the above theorem is that the value function x 7! u(x)may be viewed as a utility function as well, sharing all the qualitative featuresof the original utility function U . This makes sense economically, as u(x)denotes the expected utility at time T of an agent with initial endowment x,after having optimally invested in the �nancial market S.Let us also give an economic interpretation of the formulae for u0(x) initem (iii) along these lines: suppose the initial endowment x is varied to x+h,for some small real number h. The economic agent may use the additionalendowment h to �nance, in addition to the optimal pay-o� function bXT (x), hunits of the cash account, thus ending up with the pay-o� function bXT (x)+h attime T . Comparing this investment strategy to the optimal one correspondingto the initial endowment x + h, which is bXT (x+ h), we obtainlimh!0 u(x+ h)� u(x)h = limh!0 E [U( bXT (x + h))� U( bXT (x))]h (61)� limh!0 E [U( bXT (x) + h)� U( bXT (x))]h (62)= E [U 0( bXT (x))]: (63)Using the fact that u is di�erentiable, and that h may be positive as wellas negative, we have found another proof of formula (55) for u0(x); the eco-nomic interpretation of this proof is that the economic agent, who is optimallyinvesting, is indi�erent of �rst order towards a (small) additional investmentinto the cash account.Playing the same game as above, but using the additional endowment h 2 Rto �nance an additional investment into the optimal portfolio bXT (x) (assuming,for simplicity, x 6= 0), we arrive at the pay-o� function x+hx bXT (x). Comparingthis investment with bXT (x + h), an analogous calculation as in (61) leadsto the formula for u0(x) displayed in (56). The interpretation now is, thatthe optimally investing economic agent is indi�erent of �rst order towards amarginal variation of the investment into the optimal portfolio.It now becomes clear that formulae (55) and (56) for u0(x) are just specialcases of a more general principle: for each f 2 L1(
;F ;P) we haveEQ [f ]u0(x) = limh!0 EP [U( bXT (x) + hf)� U( bXT (x))]h : (64)The proof of this formula again is along the lines of (61) and the interpreta-tion is the following: by investing an additional endowment hEQ [f ] to �nancethe contingent claim hf , the increase in expected utility is of �rst order equalto hEQ [f ]u0(x); hence again the economic agent is of �rst order indi�erenttowards an additional investment into the contingent claim f .2.2 The Incomplete CaseWe now drop the assumption that the set Me(S) of equivalent martingalemeasures is reduced to a singleton (but we still remain in the framework of12



a �nite probability space 
) and replace it by Assumption 1.1 requiring thatMe(S) 6= ;.In this setting it follows from basic linear algebra that a random variableXT (!n) = �n may be dominated by a random variable of the form x+(H�S)T i�EQ [XT ] =PNn=1 qn�n � x, for each Q = (q1 : : : ; qN ) 2 Ma(S) (or equivalently,for every Q 2 Me(S)). This basic result is proved in [KQ95], [J 92], [AS 94],[DS 94] and [DS 98a] in varying degrees of generality; in the present �nite-dimensional case this fact is straightforward to prove, using elementary linearalgebra (see, e.g, [S 01]).In order to reduce the in�nitely many constraints, where Q runs throughMa(S), to a �nite number, make the easy observation that Ma(S) is abounded, closed, convex polytope in RN and therefore the convex hull of its�nitely many extreme points fQ1; : : : ; QMg. Indeed,Ma(S) is given by �nitelymany linear constraints. For 1 � m �M , we identify Qm with its probabilites(qm1 ; : : : ; qmN ).Fixing the initial endowment x 2 dom(U), we therefore may write theutility maximization problem (16) similarly as in (20) as a concave optimizationproblem over RN with �nitely many linear constraints:(Px) EP [U(XT )] = NXn=1 pnU(�n)! max! (65)EQm [XT ] = NXn=1 qmn �n � x; for m = 1; : : : ;M: (66)Writing againC(x) = �XT 2 L0(
;F ;P) : E [XT ] � x; for all Q 2 Ma(S)	 (67)we de�ne the value functionu(x) = supH2H E [U (x+ (H �S)T )] = supXT2C(x) E [U(XT )]; x 2 dom(U): (68)The Lagrangian now is given byL(�1; : : : ; �N ; �1; : : : ; �M) (69)= NXn=1 pnU(�n)� MXm=1 �m NXn=1 qmn �n � x! (70)= NXn=1 pn U(�n)� MXm=1 �mqmnpn �n!+ MXm=1 �mx; (71)where (�1; : : : ; �N) 2 dom(U)N ; (�1; : : : ; �M) 2 RM+ : (72)Writing y = �1 + : : :+ �M , �m = �my , � = (�1; : : : ; �m) andQ� = MXm=1 �mQm; (73)13



note that, when (�1; : : : ; �M) runs trough RM+ , the pairs (y;Q�) run throughR + �Ma(S). Hence we may write the Lagrangian asL(�1; : : : ; �N ; y; Q) == EP [U(XT )]� y (EQ [XT � x])= NXn=1 pn�U(�n)� yqnpn �n� + yx;where �n 2 dom(U); y > 0; Q = (q1; : : : ; qN) 2 Ma(S): (74)This expression is entirely analogous to (24), the only di�erence now being thatQ runs through the set Ma(S) instead of being a �xed probability measure.De�ning again �(�1; : : : ; �n) = infy>0;Q2Ma(S)L(�1; : : : ; �N ; y; Q); (75)and 	(y;Q) = sup�1;::: ;�N L(�1; : : : ; �N ; y; Q); (76)we obtain, just as in the complete case,sup�1;::: ;�N �(�1; : : : ; �N) = u(x); x 2 dom(U); (77)and 	(y;Q) = NXn=1 pnV �yqnpn �+ yx; y > 0; Q 2 Ma(S); (78)where (q1; : : : ; qN) denotes the probabilities of Q 2 Ma(S). The minimizationof 	 will be done in two steps: �rst we �x y > 0 and minimize over Ma(S),i.e., 	(y) := infQ2Ma(S)	(y;Q); y > 0: (79)For �xed y > 0, the continuous function Q! 	(y;Q) attains its minimumon the compact set Ma(S), and the minimizer bQ(y) is unique by the strictconvexity of V . Writing bQ(y) = (bq1(y); : : : ; bqN (y)) for the minimizer, it followsfrom V 0(0) = �1 that bqn(y) > 0, for each n = 1; : : : ; N ; in other words, bQ(y)is an equivalent martingale measure for S.De�ning the dual value function v(y) byv(y) = infQ2Ma(S) NXn=1 pnV �y qnpn� (80)= NXn=1 pnV �y bqn(y)pn � (81)14



we �nd ourselves in an analogous situation as in the complete case above:de�ning again by(x) by v0(by(x)) = �x andb�n = I �by(x)bqn(y)pn � ; (82)similar arguments as above apply to show that (b�1; : : : ; b�N ; by(x); bQ(y)) is theunique saddle-point of the Lagrangian (74) and that the value functions u andv are conjugate.Let us summarize what we have found in the incomplete case:Theorem 2.3 (�nite 
, incomplete market) Let the �nancial marketS = (St)Tt=0 de�ned over the �nite �ltered probability space (
;F ; (F)Tt=0;P)and let Me(S) 6= ;, and the utility function U satis�es Assumptions 1.2.Denote by u(x) and v(y) the value functionsu(x) = supXT2C(x) E [U(XT )]; x 2 dom(U); (83)v(y) = infQ2Ma(S) E �V �y dQdP�� ; y > 0: (84)We then have:(i) The value functions u(x) and v(y) are conjugate and u shares the quali-tative properties of U listed in Assumption 1.2.(ii) The optimizers bXT (x) and bQ(y) in (83) and (84) exist, are unique,bQ(y) 2 Me(S), and satisfybXT (x) = I  yd bQ(y)dP ! ; y d bQ(y)dP = U 0( bXT (x)); (85)where x 2 dom(U) and y > 0 are related via u0(x) = y or, equivalently,x = �v0(y).(iii) The following formulae for u0 and v0 hold true:u0(x) = EP [U 0( bXT (x))]; v0(y) = EQ hV 0 �y d bQ(y)dP �i (86)xu0(x) = EP [ bXT (x)U 0( bXT (x))]; yv0(y) = EP hy d bQ(y)dP V 0 �y d bQ(y)dP �i:(87)Remark 2.4 Let us again interpret the formulae (86), (87) for u0(x) similarlyas in Remark 2.2 above. In fact, the interpretations of these formulae as wellas their derivations remain in the incomplete case exactly the same.But a new and interesting phenomenon arises when we pass to the variationof the optimal pay-o� function bXT (x) by a small unit of an arbitrary pay-o�function f 2 L1(
;F ;P). Similarly as in (64) we have the formulaE bQ(y)[f ]u0(x) = limh!0 EP [U( bXT (x) + hf)� U( bXT (x))]h ; (88)15



the only di�erence being that Q has been replaced by bQ(y) (recall that x andy are related via u0(x) = y).The remarkable feature of this formula is that it does not only pertain tovariations of the form f = x + (H �S)T , i.e, contingent claims attainable atprice x, but to arbitrary contingent claims f , for which | in general | wecannot derive the price from no arbitrage considerations.The economic interpretation of formula (88) is the following: the pricingrule f 7! E bQ(y)[f ] yields precisely those prices, at which an economic agent withinitial endowment x, utility function U and investing optimally, is indi�erentof �rst order towards adding a (small) unit of the contingent claim f to herportfolio bXT (x).In fact, one may turn the view around, and this was done by M. Davis[D 97] (compare also the work of L. Foldes [F 90]): one may de�ne bQ(y) by(88), verify that this indeed is an equivalent martingale measure for S, andinterpret this pricing rule as \pricing by marginal utility", which is, of course,a classical and basic paradigm in economics.Let us give a proof for (88) (under the hypotheses of Theorem 2.3). Onepossibility, which also has the advantage of a nice economic interpretation,is the idea of introducing \�ctitious securities" as developed in [KLSX91]:�x x 2 dom(U) and y = u0(x) and let (f 1; : : : ; fk) be �nitely elements ofL1(
;F ;P) such that the space K = f(H � S)T : H 2 Hg, the constantfunction 1, and (f 1; : : : ; fk) linearly span L1(
;F ;P). De�ne the k processesSd+jt = E bQ(y)[f jjFt]; j = 1; : : : ; k; t = 0; : : : ; T: (89)Now extend the Rd+1 -valued process S = (S0; : : : ; Sd) to the Rd+k+1 -valuedprocess S = (S0; : : : ; Sd; Sd+1; : : : ; Sd+k) by adding these new coordinates. By(89) we still have that S is a martingale under bQ(y), which now is the uniqueprobability under which S is martingale, by our choice of (f 1; : : : ; fk).Hence we �nd ourselves in the situation of Theorem 2.1. By comparing(54) and (85) we observe that the optimal pay-o� function bXT (x) has notchanged. Economically speaking this means that in the \completed" marketS the optimal investment may still be achieved by trading only in the �rstd+ 1 assets and without touching the \�ctitious" securities Sd+1; : : : ; Sd+k.In particular, we now may apply formula (64) to Q = bQ(y) to obtain (88).Finally remark that the pricing rule induced by bQ(y) is precisely such thatthe interpretation of the optimal investment bXT (x) de�ned in (85) (given inRemark 2.2 in terms of marginal utility and the ratio of Arrow-Debreu pricesbqn(y) and probabilities pn) carries over to the present incomplete setting. Theabove completion of the market by introducing \�ctious securities" allows foran economic interpretation of this fact.
16



3 The general caseIn the previous section we have analyzed the duality theory of the optimizationproblem (1) in detail and with full proofs, for the case when the underlyingprobability space is �nite.We now pass to the question under which conditions the crucial featuresof the above Theorem 2.3 carry over to the general setting. In particular oneis naturally led to ask: under which conditions� are the optimizers bXT (x) and bQ(y) of the value functions u(x) and v(y)attained?� does the basic duality formulaU 0 � bXT (x)� = by(x)d bQ(by(x))dP (90)or, equivalently bXT (x) = I  by(x)d bQ(by(x))dP ! (91)hold true?� are the value functions u(x) and v(y) conjugate?� does the value function u(x) still inherit the qualitative properties of Ulisted in Assumption 1.2?� do the formulae for u0(x) still hold true?We shall see that we get a�rmative answers to these questions under twoprovisos: �rstly, one has to make an appropriate choice of the sets in whichXT and Q are allowed to vary. This choice will be di�erent for case 1, wheredom(U) = R+ , and case 2, where dom(U) = R. Secondly, the utility functionU has to satisfy | in addition to Assumption 1.2| a mild regularity condition,namely the property of \reasonable asymptotic elasticity".The essential message of the theorems below is that, assuming that U has\reasonable asymptotic elasticity", the duality theory works just as well asin the case of �nite 
. Note that we do not have to impose any regularityconditions on the underlying stochastic process S, except for its arbitrage-freeness in the sense made precise by Assumption 1.1. On the other hand,the assumption of reasonable asymptotic elasticity on the utility function Ucannot be relaxed, even if we impose very strong assumptions on the processS (e.g., having continuous paths and de�ning a complete �nancial market), aswe shall see below.Before passing to the positive results we �rst analyze the notion of \rea-sonable asymptotic elasticity" and sketch the announced counterexample.17



De�nition 3.1 A utility function U satisfying Assumption 1.2 is said to have\reasonable asymptotic elasticity" iflim supx!1 xU 0(x)U(x) < 1; (92)and, in case 2 of Assumption 1.2, we also havelim infx!�1 xU 0(x)U(x) > 1: (93)Let us discuss the economic meaning of this notion: �rstly note that xU 0(x)U(x) isthe elasticity of the function U at x, and that we are interested in its asymptoticbehaviour. It easily follows from Assumption 1.2 that the limits in (92) and(93) are less than or equal to one. What does it mean that xU 0(x)U(x) tends toone, for x 7! 1? It means that the ratio between the marginal utility U 0(x)and the average utility U(x)x tends to one. A typical example is a functionU(x) which equals xln(x) , for x large enough; note however, that in this exampleAssumption 1.2 is not violated insofar as the marginal utility still decreases tozero for x!1, i.e., limx!1U 0(x) = 0.If the marginal utility U 0(x) is approximately equal to the average utilityU(x)x , this means that for an economic agent, modeled by the utility functionU , the increase in utility by varying wealth from x to x+1, when x is large, isapproximately equal to the average of the increase of utility by changing wealthfrom n to n+1, where n runs through 1; 2; : : : ; x� 1 (we assume in this argu-ment that x is a large natural number and, w.l.o.g., that U(1) � 0). We feelthat the economic intuition behind decreasing marginal utility suggests that,for large x, the marginal utility U 0(x) should be substanitally smaller than theaverage utility U(x)x . Therefore we have distinguished a utility function, wherethe ratio of U 0(x) and U(x)x tends to one, as being \unreasonable". Another jus-ti�cation for this terminology will be the results of Example 3.2 and Theorems3.4 and 3.5 below.Similar reasoning applies to the asymptotic behaviour of xU 0(x)U(x) , as x tendsto �1, in case 2. In this context the typical counter-example is U(x) �x ln(jxj), for x < x0; in this case one �nds similarlylimx!�1U 0(x) =1; while limx!�1 xU 0(x)U(x) = 1: (94)The message of De�nition 3.1 above is | roughly speaking | that wewant to exclude utility functions U which behave like U(x) � xln(x) , as x!1,or U(x) � x ln jxj, as x ! �1. Similar (but not quite equivalent) notionscomparing the behaviour of U(x) with that of power functions in the settingof case 1, were de�ned and analyzed in [KLSX91] (see [KS 99], lemma 6.5, fora comparison of these concepts). 18



We start with a sketch of a counterexample showing the relevance of thenotion of asymptotic elasticity in the context of utility maximization: wheneverU fails to have reasonable asymptotic elasticity the duality theory breaks downin a rather dramatic way. We only state the version of the counterexamplewhere both assumptions (92) and (93) are violated and refer to [KS 99] and[S 01] for the other cases.Example 3.2 ([S 00], prop. 3.5) Let U be any utility function satisfying As-sumption 1.2, case 2 and such thatlimx!�1 xU 0(x)U(x) = limx!1 xU 0(x)U(x) = 1; (95)Then there is an R-valued process (St)0�t�T of the formSt = exp (Bt + �t) ; (96)where B = (Bt)0�t�T is a standard Brownian motion, based on its natural�ltered probability space, and �t a predictable process, such that the followingproperties hold true:(i) Me(S) = fQg, i.e., S de�nes a complete �nancial market.(ii) The primal value function u(x) fails to be strictly concave and to satisfyu0(1) = 0, u0(�1) =1 in a rather striking way: u(x) is a straight lineof the form u(x) = c+ x, for some constant c 2 R.(iii) The optimal investment bXT (x) fails to exist, for all x 2 R, except forone point x = x0. In particular, for x 6= x0, the formula (91) does notde�ne the optimal investment bXT (x).(iv) The dual value function v fails to be a �nite, smooth, strictly convexfunction on R + in a rather striking way: in fact, v(1) <1 while v(y) =1, for all y > 0, y 6= 1.We do not give a rigorous proof for these assertions but refer to [S 00,Proposition 3.5], which in turn is a variant of [KS 99, Proposition 5.4].We shall try to sketch the basic idea underlying the construction of theexample, in mathematical as well as economic terms. Arguing mathemati-cally, one starts by translating the assumptions (95) on the utility function Uinto equivalent properties of the conjugate function V : roughly speaking, thecorresponding property of V (y) is, that it increases very rapidly to in�nity,as y ! 0 and y !1 (see [KS 99, Corrolary 6.1] and [S 00, Proposition 4.1]).Having isolated this property of V , it is an easy exercise to construct a functionf : [0; 1]!]0;1[, E [f ] = 1 such thatE [V (f)] <1 while E [V (yf)] =1; for y 6= 1; (97)19



where E denotes expectation with respect to Lebesque measure �. In fact onemay �nd such a function f taking only the values (yn)1n=�1, for a suitablechosen increasing sequence (yn)1n=�1, limn!�1 yn = 0, limn!1 yn =1.Next we construct a measure Q on the sigma algebra F = FT generated bythe Brownian motion B = (Bt)0�t�T which is equivalent to Wiener measure P,and such that the distribution of dQdP (under P) equals that of f (under Lebesguemeasure �). There is no uniqueness in this part of the construction, but it isstraightforward to �nd some appropriate measure Q with this property.By Girsanov's theorem we know that we can �nd an adapted process(�t)0�t�T , such that Q is the unique equivalent local martingale measure forthe process de�ned in (96), hence we obtain assertion (i).This construction makes sure that we obtain property (iv), i.e.v(y) = EP �V �y dQdP�� = E� [V (yf)] <1 i� y = 1: (98)Once this crucial property is established, most of the assertions made in(ii) and (iii) above easily follow (in fact, for the existence of bXT (x) for preciselyone x = x0, some extra care is needed).Instead of elaborating further on the mathematical details of the construc-tion sketched above, let us try to give an economic interpretation of what isreally happening in the above example. This is not easy, but we �nd it worthtrying. We concentrate on the behaviour of U as x ! 1, the case whenx! �1 being similar.How is the \unreasonability" property of the utility function U used toconstruct the pathologies in the above example? Here is a rough indication ofthe underlying economic idea: the �nancial market S is constructed in such away that one may �nd positive numbers (xn)1n=1, disjoint sets (An)1n=1 in FT ,with P[An] = pn and Q[An] = qn, such that for the contingent claims xn1Anwe approximately have EQ [xn1An] = qnxn � 1 (99)and EP [U(xn)1An ] = pnU(xn) � 1: (100)Hence qnpn � U(xn)xn .It is easy to construct a complete, continuous market S over the Brownian�ltration such that this situation occurs and this is, in fact, what is done inthe above \mathematical" argument to de�ne f and Q. We remark in passingthat one might just as well construct S as a complete, discrete time modelS = (St)1t=0 over a countable probability space 
 displaying sets An and realnumbers xn having the properties listed above. But for esthetical reasonswe have prefered to do the construction in terms of an exponential Brownianmotion with drift. 20



We claim that, for any x 2 R and any investment strategyXT = x+(H�S)T ,we can �nd an investment strategy eXT = (x + 1) + ( eH �S)T such thatE hU( eXT )i � E [U(XT )] + 1: (101)The above relation should motivate why the value function u(x) becomes astraight line with slope one, at least for x su�ciently large (for the correspond-ing behaviour of u(x) on the left hand side of R one has to play in addition asimilar game as above with (xn)1n=1 tending to �1).To present the idea behind (101), suppose that we have E [U(XT )] < 1,so that limn!1 E [U(XT )1An] = 0. Varying our initial endowment from x tox + 1 e, we may use the additional e to add to the pay-o� function XT thefunction xn1An, for some large n; by (99) this may be �nanced (approximately)with the additional e and by (100) this will increase the expected utility(approximately) by 1E [U (XT + xn1An)] � E �U(XT )1
nAn�+ E [U(XT + xn)1An ]� E [U(XT )] + pnU(xn)� E [U(XT )] + 1; (102)which was claimed in (101).The above argument also gives a hint why we cannot expect that the opti-mal strategy bXT (x) = x + ( bH �S)T exists, as one cannot \pass to the limit asn!1" in the above reasoning.Observe that we have not yet used the assumption lim supx!1 xU 0(x)U(x) = 1,as it always is possible to construct things in such a way that (99) and (100)hold true (provided only that limx!1 U(x) =1, which we assume from nowon). How does the \unreasonable asymptotic elasticity" come into play? Thepoint is that we have to do the construction described in (99) and (100) withoutviolating Assumption 1.3, i.e.,u(x) = supH2H E [U (x + (H �S)T )] <1;for some (equivalently, for all) x 2 R: (103)In order to satisfy Assumption 1.3 we have to make sure thatE " 1Xn=1 U(�nxn)1An# = 1Xn=1 pnU(�nxn) (104)remains bounded, when (�n)1n=1 runs through all convex weights �n � 0,P1n=1 �n = 1, i.e., when we consider all investments into non-negative lin-ear combinations of the contingent claims xn1An, which can be �nanced withone e. 21



The message of Example 3.2 is that this is not possible, if and only iflim supx!1 xU 0(x)U(x) = 1 (for this part of the construction we only use the asymp-totic behaviour of U(x), as x !1). To motivate this claim, think for a mo-ment of the \reasonable" case, e.g., U(x) = x�� , for some 0 < � < 1, in whichcase we have limx!1 xU 0(x)U(x) = � < 1. Letting �n � n�(1+�), we get1Xn=1 pnU(�nxn) � 1Xn=1 n�(1+�)�pnU(xn) (105)� 1Xn=1 n�(1+�)�; (106)which equals in�nity if � > 0 is small enough, that (1+�)� � 1. This argumentindicates that in the case of the power utility U(x) = x�� it is impossibleto reconcile the validity of (99) and (100) with the requirement (104). Onthe other hand, it turns out that in the \unreasonable" case, where we havelimx!1 xU 0(x)U(x) = 1, we can do the construction in such a way that U(�nxn) issu�ciently close to �nU(xn) such that we obtain a uniform bound on the sumin (104).Let us now stop our attempt at an economic interpretation. We hope thatthe above informal arguments were of some use for the reader in developing herintuition for the concept of \reasonable asymptotic elasticity" and that she nowhas some background information to �nd her way through the correspondingformal arguments in [KS 99] and [S 00].We now pass to the positive results in the spirit of Theorem 2.1 and Theo-rem 2.3 above. We �rst consider the case where U satis�es the Inada conditions(7) and (8), which was studied in [KS 99].Case 1: dom(U) = R + .The heart of the argument in the proof of Theorem 2.3 (which we now wantto extend to the general case) is the applicability of the minimax theorem,which underlies the theory of Lagrange multipliers. We want to extend theapplicability of the minimax theorem to the situation. The in�nite-dimensionalversions of the minimax theorem available in the literature (see, e.g, [ET76]or [St 85]) are along the following lines: Let hE; F i be a pair of locally convexvector spaces in separating duality, C � E, D � F a pair of convex subsets,and L(x; y) a function de�ned on C�D, concave in the �rst and convex in thesecond variable, having some (semi-)continuity property compatible with thetopologies of E and F (which in turn should be compatible with the dualitybetween E and F ). If one of the sets C and D is compact and the other iscomplete, then one may assert the existence of a saddle point (b�; b�) 2 C �Dsuch that L(b�; b�) = sup�2C inf�2D L(�; �) = inf�2D sup�2C L(�; �): (107)22



We try to apply this theorem to the analogue of the Lagrangian encounteredin the proof of Theorem 2.3 above. Fixing x > 0 and y > 0 let us formallywrite the Lagrangian (74) in the in�nite-dimensional setting,Lx;y(XT ; Q) = EP [U(XT )]� y(EQ [XT � x]) (108)= EP �U(XT )� y dQdPXT �+ yx; (109)where XT runs through \all" non-negative FT -measurable functions and Qthrough the set Ma(S) of absolutely continuous local martingale measures.To restrict the set of \all" nonnegative functions to a more amenable onenote that infy>0;Q2Ma(S) Lx;y(XT ; Q) > �1 i�EQ [XT ] � x; for all Q 2 Ma(S): (110)Using the basic result on the super-replicability of the contingent claim XT(see [KQ95], [J 92], [AS 94], [DS 94], and [DS 98b]), we have | as encounteredin the �nite dimensional case | that a non-negative FT -measurable randomvariable XT satis�es (110) i� there is an admissilbe trading strategy H suchthat XT � x+ (H �S)T : (111)Hence let C(x) = �XT 2 L0+(
;FT ;P) :XT � x + (H �S)T ; for some admissible Hg (112)and simply write C for C(1) (observe that C(x) = xC).We thus have found a natural set C(x) in which XT should vary whenwe are mini-maxing the Lagrangian Lx;y. Dually, the set Ma(S) seems to bethe natural domain where the measure Q is allowed to vary (in fact, we shallsee later, that this set still has to be slightly enlarged). But what are thelocally convex vector spaces E and F in separating duality into which C andMa(S) are naturally embedded? As regards Ma(S) the natural choice seemsto be L1(P) (by identifying a measure Q 2 Ma(S) with its Radon-Nikodymderivative dQdP); note that Ma(S) is a closed subset of L1(P), which is goodnews. On the other hand, there is no reason for C to be contained in L1(P), oreven in Lp(P), for any p > 0; the natural space in which C is embedded is justL0(
;FT ;P), the space of all real-valued FT -measurable functions endowedwith the topology of convergence in probability.The situation now seems hopeless (if we don't want to impose arti�cialP-integrability assumptions on XT and/or dQdP), as L0(P) and L1(P) are notin any reasonable duality; in fact, L0(P) is not even a locally convex space,hence there seems to be no hope for a good duality theory, which could serveas a basis for the application of the mimimax theorem. But the good newsis that the sets C and Ma(S) are in the positive orthant of L0(P) and L1(P)23



respectively; the crucial observation is, that for f 2 L0+(P) and g 2 L1+(P), itis possible to well-de�ne hf; gi := EP [fg] 2 [0;1]: (113)The spirit here is similar as in the very foundation of Lebesgue integrationtheory: For positive measurable functions the integral is always de�ned, butpossibly +1. This does not cause any logical inconsistency.Similarly the bracket h�; �i de�ned in (113) shares many of the usual proper-ties of a scalar product. The di�erence is that hf; gi now may assume the value+1 and that the map (f; g) 7! hf; gi is not continuous on L0+(P) � L1+(P),but only lower semi-continous (this immediately follows from Fatou's lemma).At this stage it becomes clear that the role of L1+(P) is somewhat arti�cial,and it is more natural to de�ne (113) in the general setting where f and g areboth allowed to vary in L0+(P). The pleasant feature of the space L0(P) in thecontext of Mathematical Finance is, that it is invariant under the passage toan equivalent measure Q, a property only shared by L1(P), but by no otherLp(P), for 0 < p <1.We now can turn to the polar relation between the sets C andMa(S). By(111) we have, for an element XT 2 L0+(
;F ;P),XT 2 C , EQ [XT ] = EP [XT dQdP ] � 1; for Q 2 Ma(S): (114)Denote by D the closed, convex, solid hull of Ma(S) in L0+(P). It is easyto show (using, e.g., Lemma 3.3 below), that D equalsD = fYT 2 L0+(
;FT ;P) : there is(Qn)1n=1 2 Ma(S) s.t. YT � limn!1 dQndP g; (115)where the limn!1 dQndP is understood in the sense of almost sure convergence.We have used the letter YT for the elements of D to stress the dual relationto the elements XT in C. In further analogy we write, for y > 0, D(y) foryD, so that D = D(1). By (115) and Fatou's lemma we again �nd that, forXT 2 L0+(
;F ;P)XT 2 C , EP [XTYT ] � 1; for YT 2 D: (116)Why did we pass to this enlargement D of the set Ma(S)? The reason isthat we now obtain a more symmetric relation between C and D: for YT 2L0+(
;F ;P) we haveYT 2 D, EP [XTYT ] � 1; for XT 2 C: (117)
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The proof of (117) relies on an adaption of the \bipolar theorem" fromthe theory of locally convex spaces (see, e.g., [Sch 66]) to the present dualityhL0+(P); L0+(P)i, which was worked out in [BS 99].Why is it important to de�ne the enlargement D of Ma(S) in such a waythat (117) holds true? After all, Ma(S) is a nice, convex, closed (w.r.t. thenorm of L1(P)) set and we also have that, for g 2 L1(P) such that EP [g] = 1,g 2 Ma(S), EP [XTg] � 1; for XT 2 C: (118)The reason is that, in general, the saddle point ( bXT ; bQ) of the Lagrangianwill not be such that bQ is a probability measure; it will only satisfy E h d bQdPi � 1,the inequality possibly being strict. But it will turn out that bQ, which weidentify with d bQdP , is always in D. In fact, the passage fromMa(S) to D is thecrucial feature in order to make the duality work in the present setting: we shallsee below that even for nice utility functions U , such as the logarithm, and fornice processes, such as a continuous process (St)0�t�T based on the �ltrationof two Brownian motions, the above described phenomenon can occur: thesaddle point of the Lagrangian leads out of Ma(S).The set D can be characterized in several equivalent manners. We have de-�nedD above in the abstract way as the convex, closed, solid hull ofMa(S) andmentioned the description (115). Equivalently, one may de�ne D as the set ofrandom variables YT 2 L0+(
;F ;P) such that there is a process (Yt)0�t�T start-ing at Y0 = 1 with (YtXt)0�t�T a P-supermartingale, for every non-negativeprocess (Xt)0�t�T = (x+(H �S)t)0�t�T , where x > 0 and H is predictable andS-integrable. This de�nition was used in [KS 99]. Another equivalent charac-terization was used in [CSW00]: Consider the convex, solid hull of Ma(S),which equals S0�y�1 yMa(S), and embed this subset of L1(P) into the bidualL1(P)�� = L1(P)�; denote byMa(S) the weak-star closure of S0�y�1 yMa(S)in L1(P)�. Each element of Ma(S) may be decomposed into its regular part�r 2 L1(P) and its purely singular part �s 2 L1(P)�. It turns out that Dequals the set f�r 2 L1(P) : � 2 Ma(S)g, i.e. consists of the regular partsof the elements of Ma(S). This description has the advantage that we mayassociate to the elements �r 2 D a singular part �s and it is this extra in-formation which is crucial when extending the present results to the case ofrandom endowment (see [CSW00]).Why are the sets C and D hopeful candidates for the minmax theorem towork out properly for a function L de�ned on C�D? Both are closed, convexand bounded subsets of L0+(P). But recall that we still need some compactnessproperty to be able to localize the mini-maximizers (resp. maxi-minimizers)on C (resp. D). In general, neither C nor D is compact (w.r.t. the topology ofconvergence in measure), i.e., for a sequence (fn)1n=1 in C (resp. (gn)1n=1 in D)we cannot pass to a subsequence converging in measure. But C and D have aproperty which is close to compactness and in many applications turns out toserve just as well. 25



Lemma 3.3 Let A be a closed, convex, bounded subset of L0+(
;F ;P). Thenfor each sequence (hn)1n=1 2 A there exists a sequence of convex combinationskn 2 conv(hn; hn+1; : : : ) which converges almost surely to a function k 2 A.This easy lemma (see, e.g., [DS 94, Lemma A.1.1], for a proof) is inthe spririt of the celebrated theorem of Komlos [Kom67], stating that fora bounded sequence (hn)1n=1 in L1(P) there is a subsequence converging inCesaro-mean almost surely. The methodology of �nding pointwise limits byusing convex combinations has turned out to be extremely useful as a surro-gate for compactness. For an extensive discussion of more re�ned versions ofthe above lemma and their applications to Mathematical Finance we refer to[DS 99].The application of the above lemma is the following: by passing to convexcombinations of optimizing sequences (fn)1n=1 in C (resp. (gn)1n=1 in D), we canalways �nd limits f 2 C (resp. g 2 D) w.r.t. almost sure convergence. Notethat the passage to convex combinations does not cost more than passing to asubsequence in the application to convex optimization.We have now given su�cient motivation to state the central result of[KS 99], which is the generalization of Theorem 2.3 to the semi-martingalesetting under Assumption 1.2, case 1, and having reasonable asymptotic elas-ticity.Theorem 3.4 ([KS 99], th. 2.2) Let the semi-martingale S = (St)0�t�T andthe utility function U satisfy Assumptions 1.1, 1.2 case 1 and 1.3; suppose inaddition that U has reasonable asymptotic elasticity. De�neu(x) = supXT2C(x) E [U(XT )]; v(y) = infYT2D(y) E [V (YT )]: (119)Then we have:(i) The value functions u(x) and v(y) are conjugate; they are continuouslydi�erentiable, strictly concave (resp. convex) on ]0;1[ and satisfyu0(0) = �v0(0) =1; u0(1) = v0(1) = 0: (120)(ii) The optimizers bXT (x) and bYT (y) in (119) exist, are unique and satisfybXT (x) = I(bYT (y)); bYT (y) = U 0( bXT (x)); (121)where x > 0, y > 0 are related via u0(x) = y or equivalently x = �v0(y).(iii) We have the following relations between u0; v0 and bXT ; bYT respectively:u0(x) = E h bXT (x)U 0( bXT (x))x i ; x > 0; v0(y) = E h bYT (y)V 0(bYT (y))y i ; y > 0:(122)26



For the proof of the theorem we refer to [KS 99].We �nish the discussion of utility functions satisfying the Inada conditions(7) and (8) by briey indicating an example, when the dual optimizer bYT (y)fails to be of the form bYT (y) = y d bQ(y)dP , for some probability measure bQ(y).It su�ces to consider a stock-price process of the formSt = �exp �Bt + t2��� (123)= exp �Bt^� + t^�2 � ; t � 0;where (Bt)t�0 is Brownian motion based on (
;F ; (Ft)t>0;P) and � a suitablychosen �nite stopping time (to be discussed below) with respect to the �ltration(Ft)t>0, after which the process S remains constant.The usual way to �nd a risk-neutral measure Q for the process S above isto use Girsanov's formula, which amounts to consideringZ� = exp(�B� � �2 ) (124)as a candidate for the Radon-Nikodym derivative dQdP .It turns out that one may construct � in such a way that the density processgiven by Girsanov's theoremZt = exp(�Bt^� � t^�2 ); t > 0 (125)fails to be a uniformly integrable martingale: Then in particularE [Z� ] < 1: (126)The trick is to choose the �ltration (Ft)t�0 to be generated by two independentBrownian motions (Bt)t�0 and (Wt)t�0. Using the information of both (Bt)t�0and (Wt)t�0 one may de�ne � in a suitable way such that (126) holds true andnevertheless we have that Me(S) 6= ;. In other words, there are equivalentmartingale measures Q for the process S, but Girsanov's theorem fails toproduce one.This example is known for quite some time ([DS 98a]) and served as a kindof \universal counterexample" to several questions arising in MathematicalFinance.How can one use this example in the present context? Consider the log-arithmic utility U(x) = ln(x) and recall that its conjugate function V equalsV (y) = � ln(y) � 1. Hence the dual optimization problem | formally | isgiven byE �V �y dQdP�� = E �� ln �y dQdP�� 1� == �E �ln �dQdP��� (ln(y) + 1) 7�! min!; Q 2 Ma(S): (127)It is well known (see, e.g., the literature on the \num�eraire portfolio" [L 90],[J 96], [A 97] and [B 00]), that for a process (St)t�0 based, e.g., on the �ltration27



generated by an n-dimensional Brownian motion, the martingale measure ob-tained from applying Girsanov's theorem (which equals the \minimal martin-gale measure" investigated by F�ollmer and Schweizer [FS 91]) is the minimizerfor (127), provided it exists.In the present example we have seen that the candidate for the densityof the minimal martingale measure Z� obtained from a formal application ofGirsanov's theorem fails to have full measure; but nevertheless one may showthat Z� is the optimizer of the dual problem (123), which shows in particularthat we have to pass fromMa(S) to the larger set D to �nd the dual optimizerin (127).Passing again to the general setting of Theorem 3.4 one might ask: howsevere is the fact that the dual optimizer bYT (1) may fail to be the density ofa probability measure (or that E [bYT (y)] < y, for y > 0, which amounts tothe same thing)? In fact, in many respects it does not bother us at all: westill have the basic duality relation between the primal and the dual optimizerdisplayed in Theorem 3.4 (ii). Even more is true: using the terminology from[KS 99] the product ( bXt(x)bYt(y))0�t�T , where x and y satisfy u0(x) = y, is auniformly integrable martingale. This fact can be interpreted in the followingway: by taking the optimal portfolio ( bXt(x))0�t�T as num�eraire instead of theoriginal cash account, the pricing rule obtained from the dual optimizer bYT (y)then is induced by an equivalent martingale measure. We refer to ([KS 99],p. 912) for a thorough discussion of this argument.Finally we want to draw the attention of the reader that | comparing item(iii) of Theorem 3.4 to the corresponding item of Theorem 2.3, we only assertedone pair of formulas for u0(x) and v0(y). The reason is that, in general, theformulae (86) do not hold true any more, the reason again being precisely thatfor the dual optimizer bYT (y) we may have E [bYT (y)] < y. Indeed, the validityof u0(x) = E [U 0( bXT (x))] is tantamount to the validity of y = E [bYT (y)].Case 2: dom(U) = RWe now pass to the case of a utility function U satisfying Assumption 1.2case 2 which is de�ned and �nitely valued on all of R. The reader shouldhave in mind the exponential utility U(x) = �e�x, for  > 0, as the typicalexample.We want to obtain a result analogous to Theorem 3.4 also in this setting.Roughly speaking, we get the same theorem, but the sets C and D consideredabove have to be chosen in a somewhat di�erent way, as the optimal portfoliobXT now may assume negative values too.Firstly, we have to assume throughout the rest of this section that the semi-martingale S is locally bounded. The case of non locally bounded processes isnot yet understood and waiting for future research.Next we turn to the question; what is the proper de�nition of the set C(x)of terminal values XT dominated by a random variable x+ (H �S)T , where His an \allowed" trading strategy? On the one hand we cannot be too liberalin the choice of \allowed" trading strategies as we have to exclude doubling28



strategies and similar schemes. We therefore maintain the de�nition of thevalue function u(x) unchangedu(x) = supH2H E [U (x + (H �S)T )] ; x 2 R; (128)where we still con�ne H to run through the set H of admissible trading strate-gies, i.e., such that the process ((H�S)t)0�t�T is uniformly bounded from below.This notion makes good sense economically as it describes the strategies pos-sible for an agent having a �nite credit line.On the other hand, in general, we have no chance to �nd the minimizer bHin (128) within the set of admissible strategies: already in the classical casesstudied by Merton ([M69] and [M71]) the optimal solution x+( bH�S)T to (128)is not uniformly bounded from below; this random variable typically assumeslow values with very small probability, but its essential in�mum typically isminus in�nity.In [S 00] the following approach was used to cope with this di�culty: �xthe utility function U : R ! R and �rst de�ne the set CbU(x) to consist of allrandom variables GT dominated by x + (H �S)T , for some admissible tradingstrategy H and such that E [U(GT )] makes sense:CbU(x) = �GT 2 L0(
;FT ;P) : there is H admissible s.t. (129)GT � x+ (H �S)T and E [jU(GT )j] <1g : (130)Next we de�ne CU(x) as the set of R [f+1g-valued random variables XTsuch that U(XT ) can be approximated by U(GT ) in the norm of L1(P), whenGT runs through CbU(x):CU(x) = �XT 2 L0(
;FT ;P;R [ f+1g) : U(XT ) is in (131)L1(P)-closure of fU(GT ) : GT 2 CbU(x)g	 : (132)The optimization problem (128) now readsu(x) = supXT2CU (x) E [U(XT )]; x 2 R: (133)The set CU(x) was chosen in such a way that the value functions u(x)de�ned in (128) and (133) coincide; but now we have much better chances to�nd the maximizer to (133) in the set CU(x).Two features of the de�nition of CU(x) merit some comment: �rstly, wehave allowed XT 2 CU(x) to attain the value +1; indeed, in the case whenU(1) < 1 (e.g., the case of exponential utility), this is natural, as the setfU(XT ) : XT 2 CU(x)g should equal the L1(P)-closure of the set fU(GT ) :GT 2 CbU(x)g. But we shall see that | under appropriate assumptions | theoptimizer bXT , which we are going to �nd in CU(x), will almost surely be �nite.Secondly, the elements XT of CU(x) are only random variables and, at thisstage, they are not related to a process of the form x + (H �S). Of course,29



we �nally want to �nd for each XT 2 CU(x), or at least for the optimizer bXT ,a predictable, S-integrable process H having \allowable" properties (in orderto exclude doubling strategies) and such that XT � x + (H �S)T . We shallprove later that | under appropriate assumptions | this is possible and givea precise meaning to the word \allowable".After having speci�ed the proper domain CU(x) for the primal optimizationproblem (133), we now pass to the question of �nding the proper domain forthe dual optimization problem. Here we �nd a pleasant surprise: contrary tocase 1 above, where we had to pass from the set Ma(S) to its closed, solidhull D, it turns out that, in the present case 2, the dual optimizer always liesin Ma(S). This fact was �rst proved by F. Bellini and M. Fritelli ([BF 00]).We now can state the main result of [S 00]:Theorem 3.5 (incomplete case, reasonable asymptotic elasticity)Let the locally bounded semi-martingale S = (St)0�t�T and the utility functionU satisfy Assumptions 1.1, 1.2 case 2 and 1.3; suppose in addition that U hasreasonable asymptotic elasticity. De�neu(x) = supXT2CU (x) E [U(XT )]; v(y) = infQ2Ma(S) E �V �y dQdP�� : (134)Then we have:(i) The value functions u(x) and v(y) are conjugate; they are continuouslydi�erentiable, strictly concave (resp. convex) on R (resp. on ]0;1[) andsatisfy u0(�1) = �v0(0) = v0(1) =1; u0(1) = 0: (135)(ii) The optimizers bXT (x) and bQ(y) in (134) exist, are unique and satisfybXT (x) = I  yd bQ(y)dP ! ; y d bQ(y)dP = U 0( bXT (x)); (136)where x 2 R and y > 0 are related via u0(x) = y or equivalently x =�v0(y).(iii) We have the following relations between u0; v0 and bX; bQ respectively:u0(x) = EP [U 0( bXT (x))]; v0(y) = EQ hV 0 �y d bQ(y)dP �i (137)xu0(x) = EP [ bXT (x)U 0( bXT (x))]; yv0(y) = EP hy d bQ(y)dP V 0 �y d bQ(y)dP �i:(138)(iv) If bQ(y) 2 Me(S) and x = �v0(y), then bXT (x) equals the terminal valueof a process of the form bXt(x) = x+(H �S)t, where H is predictable andS-integrable, and such that bX is a uniformly integrable martingale underbQ(y). 30



We refer to [S 00] for a proof of this theorem and further related results.We cannot go into the technicalities here, but a few comments on the proofof the above theorem are in order: the technique is to reduce case 2 to case 1by approximating the utility function U : R ! R by a sequence (U (n))1n=1of utility functions U (n) : R ! R [ f�1g such that U (n) coincides with Uon [�n;1[ and equals �1 on ] �1;�(n + 1)]. For �xed initial endowmentx 2 R, we then apply Theorem 3.4 to �nd for each U (n) the saddle-point( bX(n)T (x); bY (n)T (byn)) 2 CbU(x) �D(byn); �nally we show that this sequence con-verges to some ( bXT (x); by bQT ) 2 CU(x) � byMa(S), which then is shown to bethe saddle-point for the present problem. The details of this construction arerather technical and lengthy (see [S 00]).We have assumed in item (iv) that bQ(y) is equivalent to P and leftopen the case when bQ(y) is only absolutely continuous to P. F. Bellini andM. Fritelli have observed ([BF00]) that, in the case U(1) = 1 (or, equiva-lently, V (0) =1), it follows from (134) that bQ(y) is equivalent toP. But thereare also other important cases where we can assert that bQ(y) is equivalent toP: for example, for of the exponential utility U(x) = �e�x, in which casethe dual optimization becomes the problem of �nding bQ 2 Ma(S) minimizingthe relative entropy with respect P, it follows from the work of Csiszar [C 75](compare also [R 84], [F 00], [GR00]) that the dual optimizer bQ(y) is equivalentto P, provided only that there is at least one Q 2 Me(S) with �nite relativeentropy.Under the condition bQ(y) 2 Me(S), item (iv) tells us that the optimizerbXT 2 CU(x) is almost surely �nite and equals the terminal value of a processx+(H�S), which is a uniformly integrable martingale under bQ(y); this propertyquali�es H to be a \allowable", as it certainly excludes doubling strategies andrelated schemes. One may turn the point of view around and take this as thede�nition of the \allowable" trading strategies; this was done in [DGRSSS 00]for the case of exponential utility, where this approach is thoroughly studiedand some other de�nitions of \allowable" trading strategies, over which theprimal problem may be optimized, are also investigated.We �nish this survey with a brief account on the recent literature relatedto maximizing expected utility in �nancial markets. There are many aspectsgoing beyond the basic problem surveyed above. We can only give a verybrief indication on the many interesting papers and hope to have provided thereader with some introductory motivation to study this literature.G. Zitkovic [Z 00] has analyzed the problem of optimizing expected utilityof consumption during the time interval [0; T ]. He obtained a similar result asTheorem 3.4 above, provided the utility functions Ut;!, which in this settingmay depend on t 2 [0; T ] and ! 2 
 in an Ft-measurable way, satisfy thereasonable elasticity condition in a uniform way.Results related to the duality theory of utility maximization and notablyto the dual optimizer bQ 2 Me(S) were obtained in [F 00], [K 00], [XY00],31
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