
Lecture 7: Convex Analysis and Fenchel-Moreau
Theorem

The main tools in mathematical finance are from theory of stochastic processes
because things are random. However, many objects are convex as well, e.g.
collections of probability measures or trading strategies, utility functions, risk
measures, etc.. Convex duality methods often lead to new insight, computa-
tional techniques and optimality conditions; for instance, pricing formulas for
financial instruments and characterizations of different types of no-arbitrage
conditions.

Convex sets

Let X be a real topological vector space, and X∗ denote the topological (or
algebraic) dual of X. Throughout, we assume that subsets and functionals are
proper, i.e., ∅ 6= C 6= X and −∞ < f 6≡ ∞.

Definition 1. Let C ⊂ X. We call C affine if

λx+ (1− λ)y ∈ C ∀x, y ∈ C, λ ∈]−∞,∞[,

convex if
λx+ (1− λ)y ∈ C ∀x, y ∈ C, λ ∈ [0, 1],

cone if
λx ∈ C ∀x ∈ C, λ ∈]0,∞].

Recall that a set A is called algebraic open, if the sets {t : x+ tv} are open
in R for every x, v ∈ X. In particular, open sets are algebraically open.

Theorem 1. (Separating Hyperplane Theorem) Let A,B be convex subsets of
X, A (algebraic) open. Then the following are equal:

1. A and B are disjoint.

2. There exists an affine set {x ∈ X : f(x) = c}, f ∈ X∗, c ∈ R, such that
A ⊂ {x ∈ X : f(x) < c} and B ⊂ {x ∈ X : f(x) ≥ c}.

If in addition A and B are cones, we may take c = 0.

Proof. 2) =⇒ 1) is obvious, 1) =⇒ 2) exercise.

On a locally convex X, Separating Hyperplane Theorem gives an useful
characterization of closed convex sets:

A ⊂ X is closed and convex ⇐⇒ A =
⋂
α

{x ∈ X : fα(x) ≥ α, fα ∈ X∗, α ∈ R}.

If X is also separable, then one can replace R with N above.
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Remark 1. Let X be a d-dimensional Hilbert space (d = # of base vectors).
We say that C ⊂ X is Chebyshev set if for every x ∈ X there exists unique
ỹ ∈ C such that ỹ = arg miny∈C ||x− y||. Consider the following statement:

C is Cheyshev set ⇐⇒ C is closed and convex.

If d <∞, then it is an easy exercise to verify that the statement above is true.
However, for d =∞, this an open problem (convexity in the implication ”⇒”).
Lesson: Be careful when d =∞.

Convex functionals

Definition 2. We call f affine on X if

λf(x) + (1− λ)f(y) = f(λx+ (1− λy)) ∀x, y ∈ X, λ ∈]−∞,∞[,

convex if

λf(x) + (1− λ)f(y) ≤ f(λx+ (1− λ)y) ∀x, y ∈ X, λ ∈ [0, 1],

positively homogeneous if

f(λx) = λf(x) ∀x ∈ X,λ ∈]0,∞],

sub-additive if
f(x+ y) ≤ f(x) + f(y) ∀x, y ∈ X.

Remark 2. If f is convex and positively homogeneous, then f is sub-additive.
Positively homogeneous and sub-additive f is called sub-linear.

Theorem 2. (Hahn-Banach Theorem) Let Y be a subspace of X, and f linear
functional on Y . If there exists a sub-linear functional g on X such that f ≤ g
on Y (and g continuous at 0), then there exists f̃ ∈ X∗ such that f̃ = f on Y
and f ≤ g on X.

Proof. This is proven at the basic course of functional analysis.

Remark 3. Separating Hyperplane Theorem (SHT) and Hahn-Banach Theorem
(HBT) are equal in the following sense: If we assume that SHT is true, then
HBT is true. Conversely, if we assume that HBT is true, then SHT is true.

Convex conjugates

We make an additional assumption that X is Hausdorff and locally convex.

Definition 3. The epigraph of f is defined as

epi f := {(x, α) ∈ X × R : f(x) ≤ α}.

If epi f is closed, we say that f is lower semicontinuous (abbreviated l.s.c.).
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Lemma 3. If f is l.s.c. and convex, then, for every x ∈ X,

f(x) = sup
a≤f

a(x),

where the supremum is taken over all continuous affine functionals on X.

Proof. The idea of proof: ”If a point does not belong to the epigraph, then there
is an affine minorant in between.”

Let (x0, α0) ∈ X × R \ epi f . By Separating Hyperplane Theorem, there
exists (x∗, c) ∈ X∗ × R such that

x∗(x) + αc > x∗(x0) + α0c, ∀(x, α) ∈ epi f.

If c 6= 0, it can be scaled to c = 1. Then inf(x,α)∈epi f{x∗(x) + α} − x∗(x) is
an affine minorant of f whose epigraph does not contain (x0, α0). So, assume
c = 0. Choose x1 ∈ X such that f(x1) <∞. Then (x1, f(x1)− 1) /∈ epi f , and,
by Separating Hyperplane Theorem, there exists (y∗, c′) ∈ X∗ × R such that

y∗(x) + αc′ > y∗(x1) + (f(x1)− 1)c′, ∀(x, α) ∈ epi f.

Since f(x1) < ∞, we have c′ 6= 0, and, by scaling, we can assume c′ = 1.
Choosing

δ >
y∗(x0) + α0 − inf(x,α)∈epi f{y∗(x) + α}

inf(x,α)∈epi f{x∗(x) + α} − x∗(x0)

and setting z∗ = δx∗ + y∗ yields

inf
(x,α)∈epi f

{z∗(x)+α} ≥ δ inf
(x,α)∈epi f

{x∗(x)+α}+ inf
(x,α)∈epi f

{y∗(x)+α} > z∗(x0)+α0.

So, inf(x,α)∈epi f{z∗(x) + α} − z∗(x) is an affine minorant of f whose epigraph
does not contain (x0, α0).

Definition 4. Let f : X → R ∪ {±∞}. Then f∗ : X∗ → R ∪ {±∞} defined by

f∗(x∗) := sup
x∈X
{x∗(x)− f(x)}

is called the convex conjugate of f , and the mapping

f 7→ f∗

is called Legendre-Fenchel transformation.

Theorem 4. (Fenchel-Moreau Theorem) If f is l.s.c. and convex, then Legendre-
Fenchel transformation is bijection: f∗∗ = f , where

f∗∗(x) := sup
x∗∈X∗

{x∗(x)− f∗(x∗)}.

3



Proof. By the definition of f∗,

f(x) ≥ sup
x∗∈X∗

{x∗(x)− f∗(x)}, for every x ∈ X.

i.e. f ≥ f∗∗. Let a be an affine minorant of f ; a ≤ f , so, a∗ ≥ f∗, so, a∗∗ ≤ f∗∗,
but since a is affine, a∗∗ = a. So, every affine minorant of f is an affine minorant
of f∗∗. By Lemma 3, f ≤ f∗∗.

We could have proved the theorem also making the following observation:
for fixed x ∈ X, the directional derivative

f ′(x; y) := lim
ε↓0

f(x+ εy)− f(x)

ε

is sub-linear as a functional of y. By Hahn-Banach Theorem, there exists f̃ ′ ∈
X∗ such that

f̃ ′(y) ≤ f ′(x; y) ≤ f(x+ y)− f(x), for every y ∈ X.

So, f(x) + f∗(f̃ ′) = f̃ ′(x), which completes the proof. We say that f̃ ′ is a sub-
gradient of f at x, and denote f̃ ′ ∈ ∂f(x). The collection of all sub-gradients
∂f is called sub-differential.
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