Serie 3

1. a) Show that $j: \Gamma \backslash \overline{\mathbb{H}} \rightarrow \mathbb{C} \cup\{\infty\}$ gives a bijection between $\Gamma \backslash \overline{\mathbb{H}}$ and the Riemann sphere $\mathbb{C} \cup\{\infty\}$. More precisely, j maps ∞ to ∞ and induces a bijection between $\Gamma \backslash \mathbb{H}$ and the complex plane \mathbb{C}.
b) Let \mathcal{F} be the standard fundamental domain for the action of Γ on $\overline{\mathbb{H}}$.

Find $j(i), j(\varrho)$ and determine all $\tau \in \mathcal{F}$ such that $j(\tau) \in \mathbb{R}$. Then show that j maps the left half of \mathcal{F} onto \mathbb{H} and the right half of \mathcal{F} onto the lower half plane.
2. Given a lattice $L=\mathbb{Z} \omega_{1} \oplus \mathbb{Z} \omega_{2}$, let

$$
\begin{aligned}
& g_{2}:=g_{2}(L)=g_{2}\left(\omega_{1}, \omega_{2}\right)=60 \sum_{m, n}\left(m \omega_{1}+n \omega_{2}\right)^{-4}, \\
& g_{3}:=g_{3}(L)=g_{3}\left(\omega_{1}, \omega_{2}\right)=140 \sum_{m, n}\left(m \omega_{1}+n \omega_{2}\right)^{-6} .
\end{aligned}
$$

These two functions g_{2} and g_{3} are called the invariants of L. Observe that $g_{2}^{3}-27 g_{3}^{2} \neq 0$.
Prove that given two complex numbers a_{2} and a_{3} satisfying $a_{2}^{3}-27 a_{3}^{2} \neq 0$, there exist complex numbers ω_{1} and ω_{2} such that ω_{1} / ω_{2} is not real, and $g_{2}\left(\omega_{1}, \omega_{2}\right)=a_{2}, g_{3}\left(\omega_{1}, \omega_{2}\right)=a_{3}$.
3. Let $V=\left\{(z, w) \in \mathbb{C}^{2}: z^{3}-27 w^{2}=0\right\}$. Let S^{3} denote the 3 -sphere. Then $T=V \cap S^{3}$ is the trefoil knot.

Prove that the space of lattices $\operatorname{SL}(2, \mathbb{Z}) \backslash \mathrm{SL}(2, \mathbb{R})$ can be identified with the complement of the trefoil knot $S^{3} \backslash T$.

Note : In fact, they are even diffeomorphic.

4. Prove Picard's Theorem :

Every non-constant entire function attains every complex value with at most one exception.

