
D-MATH Modular Forms HS 15
Prof. Özlem Imamoglu

Solutions 1

1. Consider the action of SL2(R) on the set Mat2(R) of 2 × 2-matrices with coefficients in R
defined by γ ◦M := M [γ−1] := (γ−1)tMγ−1, where M ∈ Mat2(R) and γ ∈ SL2(R).

a) Show that this action restricts to the subset SP2(R) ⊂ Mat2(R) of positive definite
symmetric quadratic matrices with determinant 1.

Solution : This follows immediately from the definitions, from basic properties of trans-
posing matrices and from the multiplicativity of the determinant.

Let us moreover associate to any element z = x+ iy in the upper half plane H the matrix

Mz :=

(
y−1 0
0 y

)[(
1 −x
0 1

)]
=

1

y

(
1 −x
−x x2 + y2

)
∈ Mat2(R).

b) Show that the association z 7→Mz defines an SL2(R)-equivariant bijection

φ : H→ SP2(R).

Solution : By construction, Mz is symmetric with determinant 1 and has positive prin-
cipal minors, i.e. Mz ∈ SP2(R), for any z ∈ H. The induced map φ : H → SP2(R)
is injective as can readily be read off its construction. Conversely, let M ∈ SP2(R). As
M has positive first principal minor and as it is symmetric, there exist x, y ∈ R, where

y 6= 0, such that M = 1
y

(
1 −x
−x λ

)
for some λ ∈ R. As the determinant of M is 1, we

get λ = x2 + y2 and hence

M =
1

y

(
1 −x
−x x2 + y2

)
.

This shows that φ is surjective.

In order to see that φ is SL2(R)-equivariant, we consider any γ =

(
a b
c d

)
∈ SL2(R)

and any M = 1
y

(
1 −x
−x x2 + y2

)
∈ SP2(R). We have γ−1 =

(
d −b
−c a

)
and compute

γ ◦M = M [γ−1] =
1

y

(
(cx+ d)2 + (cy)2 −[(ax+ b)(cx+ d) + acy2]

∗ ∗

)
=

(cx+ d)2 + (cy)2

y

(
1 −[(ax+b)(cx+d)+acy2]

(cx+d)2+(cy)2

∗ ∗

)
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and

γ(x+ iy) =
a(x+ iy)b

c(x+ iy) + d
=

(ax+ b)(cx+ d) + acy2 + iy

(cx+ d)2 + (ay)2
,

where for the imaginary part we have used that ad− bc = 1. From this we see that indeed
φ(γz) = γ ◦ φ(z).

2. Let D be any negative integer that is 0 or 1 modulo 4. Let QD be the set of quadratic forms
[A,B,C] := Ax2 +Bxy+Cy2 ∈ Z[x, y] such that A > 0 and B2−4AC = D and such that
the greatest common divisor of A,B,C is 1. This is called the set of positive definite primitive
quadratic forms of discriminant D.

For any γ ∈ SL2(Z) and any Q ∈ QD we set (γQ)[x, y] := Q[ax + by, cx + dy] ∈ Z[x, y],

where
(
a b
c d

)
= γ−1.

a) Show that this defines an action of SL2(Z) on QD and show that the association

[A,B,C] 7→ ψ([A,B,C]) :=
2√
|D|

(
A B

2
B
2 C

)
defines an SL2(Z)-equivariant map ψ : QD → SP2(R).

Solution : Consider any Q := [A,B,C] ∈ QD. By construction ψ(Q) is a symmetric
matrix with determinant 1. As moreover 2A√

|D|
> 0 is the first principal minor of ψ(Q),

we see that ψ(Q) is positive definite. Thus ψ(Q) ∈ SP2(R).

We claim that for any γ ∈ SL2(Z) we have ψ(γQ) = γψ(Q). As ψ is injective, this
will show both that (γ,Q) 7→ γQ defines an action of SL2(Z) on QD and that ψ is
SL2(Z)-equivariant. In order to prove the claim it is enough to consider the cases

γ =

(
1 1
0 1

)
and γ =

(
0 1
−1 0

)
because these two matrices generate SL2(Z). The claim for any of these two matrices
however is immediately checked via a straightforward computation.

The orbits of this action are called equivalence classes of QD.

b) Show that φ−1◦ψ sends any quadratic form [A,B,C] ∈ QD to its unique root −B+i
√
|D|

2A
in H.

Solution : We have

ψ([A,B,C]) =
2√
|D|

(
A B

2
B
2 C

)
=

2A√
|D|

(
1 B

2A
B
2A

C
A

)

for any [A,B,C] ∈ QD and therefore φ−1 ◦ ψ([A,B,C]) =
−B+i

√
|D|

2A .
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c) Show that any equivalence class of QD has a unique representative in the set

Qred
D := {[A,B,C] ∈ QD| −A < B ≤ A < C or 0 ≤ B ≤ A = C}

of reduced quadratic forms of QD.

Solution :By a theorem of the lecture, any element in SL2(Z)\H has a unique repre-
sentative in the strict fundamental domain F ⊂ H. In particular, as ψ ◦ φ−1 is SL2(Z)-
equivariant, any equivalence class of QD has a unique representative [A,B,C] such that
−B+i

√
|D|

2A ∈ F . We claim that such representatives are precisely the reduced quadratic

forms. By definition of F , we have −B+i
√
|D|

2A ∈ F if and only if −12 ≤
−B
2A < 1

2 , i.e.
−A < B ≤ A, and √

|D|
4A2

>

√
1− B2

4A2
if
−B
2A

> 0

and √
|D|

4A2
≥
√

1− B2

4A2
if
−B
2A
≤ 0.

UsingB2−4AC = D, we get that
√
|D|

4A2 >
√

1− B2

4A2 respectively
√
|D|

4A2 ≥
√

1− B2

4A2

if and only if A < C respectively A ≤ C. Therefore −B+i
√
|D|

2A ∈ F if and only if
−A < B ≤ A < C or 0 ≤ B ≤ A = C. These are precisely the properties defining
Qred
D .

d) Conclude that the set of equivalence classes ofQD is finite. Its order h(D) := | SL2(Z)\QD|
is called the class number of D.

Solution : Consider any [A,B,C] ∈ Qred
D . As C ≥ A ≥ |B|, we have that |D| =

4AC −B2 ≥ 3A2 and thus

A, |B| ≤
√
|D|
3
.

AsC = B2−D
4A is uniquely determined byA,B andD, this implies thatQred

D is a finite set.
By Part c) we moreover have that |Qred

D | = | SL2(Z)\QD| which finishes the Exercise.

3. Let τ = x+ iy ∈ H, q := e2πiτ . We define Eisenstein series of weight 2:

G2(τ) :=
1

2

∑
06=n∈Z

1

n2
+

∑
06=m∈Z

∑
n∈Z

1

(mτ + n)2
,

G∗2(τ) := G2(τ)− π

2y

G2,ε(τ) :=
1

2

∑ ′

m,n∈Z

1

(mτ + n)2
1

|mτ + n|2ε
, for ε > 0

a) Let γ =

(
a b
c d

)
∈ SL2(Z). Check that G2,ε converges absolutely and locally unifor-

mely and satisfies: G2,ε(γτ) = (cτ + d)2|cτ + d|2εG2,ε(τ).
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Proof:
Let τ ∈ H, ε > 0, 2 < k ∈ R and let Λτ = τZ + Z. Then the number of pairs
(m,n) ∈ Z2 with N ≤ |mτ + n| < N + 1 is the number of lattice points in the annulus
of area π(N+1)2−πN2, so it isO(N) and the series

∑ ′
m,n∈Z

1
|mτ+n|k is majorized by

the sum
∑∞

N=1N
1−k which converges absolutely for k > 1. Since 2+2ε > 2 we get that

G2,ε converges absolutely and locally uniformly (soG2,ε is holomorphic). We use that the
matrix vector multiplication from the right (m′, n′) = (ma + nc,mb + nd) = (m,n)γ

with γ =

(
a b
c d

)
∈ SL2(Z) gives a bijection from Z2\(0, 0) to itself. Furthermore we

have:

mγτ + n =
m(aτ + b) + n(cτ + d)

j(γ, τ)
=

(ma+ nc)τ + (mb+ nd)

j(γ, τ)
=
m′τ + n′

j(γ, τ)

The two previous facts give:

G2,ε(γτ) =
∑ ′

m,n∈Z
(mγτ + n)2|mγτ + n|2ε

=
∑ ′

m′,n′∈Z
j(γ, τ)2(m′τ + n′)2|j(γ, τ)|2ε|m′τ + n′|2ε

= (cz + d)2|cz + d|2εG2,ε(τ)

b) For ε > −1
2 , τ ∈ H let:

Iε(τ) :=

∫ ∞
−∞

dt

(τ + t)2|τ + t|2ε
and I(ε) :=

∫ ∞
−∞

(t+ i)−2(t2 + 1)−εdt

Consider G2,ε(τ) −
∑∞

m=1 Ie(mτ). Use the mean-value theorem to show that it conver-
ges absolutely and locally uniformly for ε > −1

2 and that its limit as ε→ 0 is G2(τ).

Proof:
Set f(t) := (mτ + t)−2|mτ + t|−2ε. We use 2a) to change the order of summation and
to interchange integration and summation.

G̃2,ε(τ) := G2,ε(τ)−
∞∑
m=1

Ie(mτ)

=
∞∑
n=1

1

n2+2ε
+
∞∑
m=1

∞∑
n=−∞

[
1

(mτ + n)2
1

|mτ + n|2ε
−
∫ n+1

n

dt

(mτ + t)2|mτ + t|2ε

]

=

∞∑
n=1

1

n2+2ε
+

∞∑
m=1

∞∑
n=−∞

∫ n+1

n
(f(n)− f(t))dt

By the mean-value theorem we know that for n ≤ t ≤ n+ 1:

|f(t)− f(n)| ≤ maxn≤u≤n+1|f ′(u)| = O(|mτ + n|−3−2ε)
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Hence the limit limε→0 G̃2,ε(τ) exists and can be obtained by putting ε = 0 in each term:

lim
ε→0

G̃2,ε(τ) =
1

2

∞∑
0 6=n∈Z

1

n2
+
∞∑
m=1

∞∑
n=−∞

[
1

(mτ + n)2
+

1

mτ + n+ 1
− 1

mτ + n

]

=
1

2

∞∑
0 6=n∈Z

1

n2
+

∞∑
m=1

( ∞∑
n=−∞

1

(mτ + n)2
−

∞∑
n=−∞

1

(mτ + n+ 1)(mτ + n)

)

Note that the last inner sum is given by telescoping sumHx :=
∑∞

n=0
1

(x+n+1)(x+n) = 1
x :

∞∑
n=−∞

1

(mτ + n+ 1)(mτ + n)
= Hmτ +H−mτ = 0

Hence limε→0 G̃2,ε(τ) = 1
2

∑∞
06=n∈Z

1
n2 +

∑∞
m=1

∑∞
n=−∞

1
(mτ+n)2

= G2(τ).

c) Show that: Iε(x+ iy) = I(ε)
y1+2ε and I ′(0) = −π.

Use this to show that: limε→0G2,ε(τ) = G∗2(τ).
Hence G∗2 transforms like a modular form of weight 2.

Proof:

Iε(x+ iy) =

∫ ∞
−∞

dt

((x+ t) + iy)2((x+ t)2 + y2)ε
(t 7→ t− x)

=

∫ ∞
−∞

dt

(t+ iy)2(t2 + y2)ε

(t 7→ ty)
=

1

y2+2ε

∫ ∞
−∞

ydt

(t+ i)2(t2 + 1)ε
=

I(ε)

y1+2ε

I ′(0) = −
∫ ∞
−∞

log(t2 + 1)

(t+ i)2
dt =

log(t2 + 1)

t+ i

∣∣∣∣∞
−∞
−
∫ ∞
−∞

2t

(t+ i)(t2 + 1)
dt

= −
∫ ∞
−∞

1

(t+ i)2
+

1

t2 + 1
dt = 0−

∫ ∞
−∞

1

t2 + 1
dt

= − arctan(t)|∞−∞ = −π

Hence
∑∞

m=1 Iε(mτ) = I(ε)ζ(1+2ε)
y1+2ε with ζ(1 + 2ε) = 1

2ε + O(1). Hence in the limit

ε→ 0 this product converges to I′(0)
2y = −π

2y . This means that

lim
ε→0

G2,ε(τ) = lim
ε→0

(
G̃2,ε(τ)−

∞∑
m=1

Iε(mτ)

)
= G2(τ)− π

2y
= G∗2(τ)

The modularity of G∗2 now follows from part a).

d) Conclude that:

G2

(
az + b

cz + d

)
= (cz + d)2G2(z)− πic(cz + d).
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Proof:
Since z 7→ G2(z)− π

2y is modular of weight 2, it follows that

G2(γz)− (cz + d)2G2(z) =
π

2y(γz)
− (cz + d)2

π

2y

=
π

2y

(
|cz + d|2 − (cz + d)2

)
= −πic(cz + d).

4. Recall that Möbius transformations form the group of automorphisms of the Riemann sphere,
and that Aut(Ĉ) ∼= PSL(2,C).

a) Show that any A ∈ Aut(Ĉ), A 6= 1, has at least one and at most two fixed points.

Solution : The quadratic polynomial equation Az− z = 0 has two solutions (which must
not necessarily be distinct).

b) If A ∈ Aut(Ĉ) has two distinct fixed points z−, z+ ∈ Ĉ, then show that A is conjugate
to the LFT z 7→ µ · z, for some µ ∈ C× (called the multiplier).

Solution : We can conjugate A to an element with fixed points 0 and∞, e.g. take

B(z) =
z − z−
z − z+

,

then C := BAB−1 is such an automorphism. Now consider the element associated to C
in PSL(2,C) :

C(0) = 0
C(∞) =∞

}
=⇒ C =

(√
µ

1/
√
µ

)
.

c) Show that : If A ∈ Aut(Ĉ) has exactly one fixed point, then it is conjugate to the transla-
tion z 7→ z + 1.

Solution :

The solutions to the quadratic equation Az − z = 0 are

z± =
a− d±

√
tr(A)2 − 4

2c
.

Then : z+ = z− iff tr(A)2 = 4. On the other hand, A can be conjugate to a matrix
element C with fixed point at∞, therefore of the form(

a b
a−1

)
(a, b ∈ C∗).

Solving
(
a+ a−1

)2
= 4, yields a = ±1. Finally,(

1/
√
b √

b

)(
1 b

1

)(√
b

1/
√
b

)
=

(
1 1

1

)
.
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(d) Let z ∈ Ĉ. Describe (or sketch) the orbits {Anz : n ∈ Z} on the sphere for each type of
motion.

Solution : One way to visualise the orbits is via the stereographic projection. Let p be
a point on the sphere that is neither the north pole nor the south pole. Under the stereo-
graphic projection, it is projected to a point z ∈ C×. We consider successively the orbits
generated by the transformations A = Aell, Ahyp, Alox, Apar on C.

By definition Aell is of the form Aell(z) = eiϑz for some ϑ ∈ [0, 2π), that is, it rotates the
plane around the origin. The pre images of (Anz) under the stereographic projection all
lie at the same latitude. (See figure below.)

We now consider Anhyp(n) = µnz for µ ∈ R>0. This transformation pushes z along the
half-line starting at the origin and passing through z. Its pre images under the stereogra-
phic projection all lie on the same longitudinal line going from south pole to north pole.
(In fact, one speaks of repulsive fixed point and attractive fixed point.) On the other hand,
the orbit points Anlox(z) are obtained by multiplying z with powers of a complex number
µ (with |µ| 6= 1). This is what accounts for the winding lines running from the repulsive
fixed point at the south pole to the attractive fixed point at the north pole in the illustration
[c] below.

Finally, for the parabolic case, consider Apar(z) = z + 1 and its orbit {Z + iIm(z)}. The
only fixed point is the point at∞ that corresponds to the north pole on the sphere.

(e) One can also classify the motions algebraically. Check that the trace is not well-defined
on PSL(2,C) but that its square is. Then give a characterization of parabolic, elliptic,
hyperbolic and loxodromic motions using the square of the trace. (Note that the trace is
conjugation-invariant.)

Remark : The loxodromic case does not appear for PSL(2,R).

Solution : The trace is clearly well-defined on SL(2,C) but not on PSL(2,C). Let
A ∈ SL(2,C) be the preimage under the canonical projection SL(2,C) → PSL(2,C)

of a non-parabolic transformation. Then, by (b), tr(A)2 =
(√

µ + 1√
µ

)2
. That is, if A
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is elliptic, tr(A)2 =
(
eiϑ/2 + e−iϑ/2

)2
= 4 cos(ϑ/2)2 ; if A is hyperbolic, tr(A)2 =(

et/2 + e−t/2
)2

= 4 cosh(t/2)2. Then A is

• parabolic iff tr(A)2 = 4,
• elliptic iff tr(A)2 < 4 and tr(A) ∈ R,
• hyperbolic iff tr(A)2 > 4 and tr(A) ∈ R,
• loxodromic otherwise.

5. Let S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
be the generators of the full modular group SL2(Z) and

let p be a prime. For 0 ≤ l < p we set αl := ST l and αp := 1.

a) Show that: SL2(Z) =
⋃p
l=0 α

−1
l Γ0(p) =

⋃p
l=0 Γ0(p)αl.

Proof:

Let γ =

(
A B
C D

)
∈ SL2(Z), γ 6∈ Γ0(p). We have to show that there exists β =(

a b
c d

)
∈ Γ0(p) such that γ = βαl for 0 ≤ l < p:

(
A B
C D

)
= γ

!
= βαl =

(
a b
c d

)(
0 −1
1 0

)(
1 l
0 1

)
=

(
a b
c d

)(
0 −1
1 l

)
hence:(

a b
c d

)
!
=

(
A B
C D

)(
l 1
−1 0

)
=

(
lA−B A
lC −D C

)
We set b := A and d := C. Since γ 6∈ Γ0(p) we have C 6≡ 0 mod p hence lC ≡ D
mod p has a solution with 0 ≤ l < p. We set c := lC−D and a := lA−B. Hence c ≡ 0
mod p which means that β ∈ Γ0(p).

b) Let F = SL2(Z)\H denote the usual fundamental domain of SL2(Z) and set
Fp :=

⋃p
l=0 αlF . Show that Fp is a fundamental domain of Γ0(p).

We have to show:

(i) If τ ∈ H, there is a β ∈ Γ0(p) such that βτ ∈ Fp.
(ii) No two distinct points of Fp are equivalent under Γ0(p).

Proof of (i):
Let τ ∈ H. We already know that F is a fundamental domain for SL2(Z) hence we find
γ ∈ SL2(Z) such that γτ ∈ F . By (the proof) of part a) we find β ∈ Γ0(p) such that
γ−1 = βαl for 0 ≤ l ≤ p. Hence β−1τ = αlγτ ∈ αlF ⊂ Fp.

Proof of (ii):
Recall that if τ1 = γτ2 (for τ1, τ2 ∈ F) and γ ∈ SL2(Z), then τ1 = τ2 and γ = ±1.
Let τ1, τ2 ∈ Fp with βτ1 = τ2 for β ∈ Γ0(p). We have to show that τ1 = τ2. Wlog there
are three cases to consider:
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(a) τ1, τ2 ∈ F
(b) τ1 ∈ F , τ2 ∈ αlF for 0 ≤ l < p

(c) τ1 ∈ αkF , τ2 ∈ αlF for 0 ≤ k, l < p

In case (a) we have τ1 = τ2 since β ∈ SL2(Z) and we already know that F is a
fundamental domain for SL2(Z).
In case (b) we have τ2 = αlτ

′
2 for τ ′2 ∈ F . Hence we get τ1 = β−1αlτ

′
2 and therefore

β−1αl = ±1 which implies β = ±αl. But β = ±αl 6∈ Γ0(p) for 0 ≤ l < p as one easily
checks. So we get a contradiction.
In case (c) we have τ1 = αkτ

′
1, τ2 = αlτ

′
2 for τ ′1, τ

′
2 ∈ F . Hence βαkτ ′1 = αlτ

′
2 and

therefore (as in part (b)) βαk = ±αl. So we get:

β = ±αlα−1k = ±ST lT−kS−1 = ±ST l−kS = ±
(
−1 0
l − k −1

)
Since β ∈ Γ0(p) this requires l ≡ k mod p. But since 0 ≤ l, k < p this implies l = k.
Therefore β = ±1 and τ1 = τ2. This completes the proof.

c) Draw a picture of F2. What are the cusps of Γ0(2)?

The fundamental domain F2 of Γ0(2):
By task a) and b) we have:

SL2(Z) = SΓ0(2) ∪̇ STΓ0(2) ∪̇ Γ0(2)

F2 = SF ∪̇ STF ∪̇ F

To get an idea how F2 resp. SF and STF look like first note that Tτ = τ + 1 just shifts
our fundamental domain by 1 and Sτ = −1

τ maps SF and STF to a compact set inside
or on the unit ball with non-negative imaginary part. It has three vertices and edges in
both cases. To find the vertices we look at the images under the transformations S and
ST of the vertices of F . The vertices are:

i∞, µ3 = e
2πi
3 = −1

2
+ i

√
3

2
and µ3 + 1 =

−1

µ
=

1

2
+ i

√
3

2

We have:

S(i∞) = 0, Sµ3 = µ3 + 1, S(µ3 + 1) = µ3 and

ST (i∞) = 0, STµ3 = S(µ3 + 1) = µ3, ST (µ3 + 1) =
−1

µ3 + 2
= −1

2
+ i

√
3

6

The last point is at one third of the height of µ3. This already gives us quite a good idea
of how SF and STF look like.
To be more precise we can look at the images of the edges of F and F + 1 under the
transformation Sτ = −1

τ = −x
x2+y2

+ i y
x2+y2

= x′ + iy′. Note that x′2 + y′2 = x2 + y2.
The edges are (part of) the vertical lines x = ±1

2 ,
3
2 (denoted by l± 1

2
, l 3

2
) and the circles{

x2 + y2 = 1
}

resp.
{

(x− 1)2 + y2 = 1
}

centered at 0 with radius 1 (denoted by c0,1

9



resp. c1,1). Their images are again lines and circles since we have Moebius transforma-
tions. Clearly e1 is mapped to itself. And for e2 note that we have x2 + y2 = 2x. Hence
for τ ′ = x′ + iy′ ∈ Se2 we have: x′ = −x

x2+y2
= −x

2x = −1
2 so e2 is mapped to l− 1

2
.

Finally one can check that l± 1
2

are mapped to the circles c∓1,1 and l 3
2

is mapped to the
circle c 1

3
, 1
3
. Since we already know where the vertices are mapped it is easy to see what

the exact images of the edges are. Below is a picture of F2. See:

http://www.math.lsu.edu/~verrill/fundomain/index2.html

for more images of fundamental domains of congruence subgroups.

Picture of F2 :

The cusps of Γ0(2):
We have to determine Γ0(2)\Q ∪ (i∞). Let r ∈ Q. There are two cases:

(i) r = a
c with gcd(a, c) = 1 and c even

(ii) r = b
d with gcd(b, d) = 1 and d odd

In case (i) we can extend any such a, c to a matrix γ =

(
a b
c d

)
∈ Γ0(2).

In case (ii) we can also extend b, d to a matrix γ =

(
a b
c d

)
∈ Γ0(2).

Furthermore in case (i) we have γ(i∞) = a
c = r and in case (ii) we have γ0 = b

d = r.
HenceQ ∪ (i∞) = Γ0(2)(i∞) ∪ Γ0(2)0. Since a is always odd we have γ(i∞) 6= 0 for
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any γ ∈ Γ0(2). So i∞ and 0 are Γ0(2)-inequivalent, hence:

Γ0(2)\ (Q ∪ (i∞)) = Γ0(2)(i∞) ∪̇ Γ0(2)0

So Γ0(2) has 2 cusps i∞ and 0. This can also be seen from the picture of F2.
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Remark:
γF is again a SL2(Z)-equivalent fundamental domain for any γ ∈ SL2(Z) but it is not
necessarely equivalent for subgroups of SL2(Z). SF and STF for example are SL2(Z)-
equivalent but they are not Γ0(2)-equivalent. If we divide H into SL2(Z)-equivalent do-
mains (up to borders) we get the following picture:

In general any subgroup G of SL2(Z) has a fundamental domain that is a union of such
domains. They are given by γF for γ representatives of G\SL2(Z). Note that this is a
finite group in the case of congruence subgroups and the number of needed domains is
equal to the index.
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