Solutions 5

1. Let $a:=(a(n))_{n \geq 1}$ be a sequence of complex numbers. We say that the sequence a is multiplicative if $a(m n)=a(m) a(n)$ for all coprime integers $m, n($ i.e. $\operatorname{gcd}(m, n)=1$ for all $m, n \geq 1$). The sequence a is called completely multiplicative if $a(m n)=a(m) a(n)$ holds in general.

Let $\sigma_{a} \in \mathbb{R}$ be such that

$$
L(s):=\sum_{n \geq 1} \frac{a(n)}{n^{s}}
$$

converges absolutely on the half plane of convergence $H(a):=\left\{s \in \mathbb{C} \mid \operatorname{Re}(s)>\sigma_{a}\right\}$.
a) Show that if a is multiplicative, then

$$
L(s)=\prod_{p}\left(\sum_{k \geq 0} \frac{a\left(p^{k}\right)}{p^{k s}}\right)
$$

for all $s \in H(a)$.
Solution : Recall the fundamental theorem of arithmetic and consider the set $P(x, y)$ of all natural numbers whose prime decomposition $n=p_{1}^{k_{1}} \cdots p_{m}^{k_{m}}$ is such that each prime factor p_{i} is bounded by x and all powers k_{i} are bounded by y. Then

$$
\begin{aligned}
\sum_{n \in P(x, y)} \frac{a(n)}{n^{s}} & =\sum_{\substack{n=p_{1}^{k_{1}} \cdots p_{m}^{k_{m}} \\
p_{i} \leq x, k_{i} \leq y}} \frac{a\left(p_{1}^{k_{1}} \cdots p_{m}^{k_{m}}\right)}{\left(p_{1}^{k_{1}} \cdots p_{m}^{k_{m}}\right)^{s}} \\
& =\sum\left(\frac{a\left(p_{1}^{k_{1}}\right)}{p_{1}^{k_{1} s}} \cdots \frac{a\left(p_{m}^{k_{m}}\right)}{p_{m}^{k_{m} s}}\right)=\prod_{p \leq x}\left(\sum_{k=0}^{y} \frac{a\left(p^{k}\right)}{p^{k s}}\right)
\end{aligned}
$$

where the second equality is obtained from the multiplicativity of a, and the third equality from reordering the summands. For $s \in H(a)$, the RHS is absoluetly convergent in x and y and the claim follows.
b) Show that if a is completely multiplicative, then

$$
L(s)=\prod_{p} \frac{1}{1-a(p) p^{-s}}
$$

for all $s \in H(a)$.
Solution : As a is completely multiplicative, $a\left(p^{k}\right)=a(p)^{k}$ and the claim follows from the limit formula for the geometric series.
2. Let $f \mathbb{R}_{+}^{\times} \rightarrow \mathbb{C}$ be a continuous function such that $f(y) y^{s-1} \in L^{1}\left(\mathbb{R}_{+}^{\times}\right)$for each

$$
s \in\langle\alpha, \beta\rangle:=\{s \in \mathbb{C} \mid \alpha<\operatorname{Re}(s)<\beta\}
$$

the fundamental strip determined by $\alpha<\beta \in \mathbb{R} \cup \infty$. Its Mellin transform is defined by

$$
\mathcal{M}(f)(s):=\int_{0}^{\infty} f(y) y^{s} \frac{d y}{y}
$$

for all $s \in\langle\alpha, \beta\rangle$.
a) Show that $\mathcal{M}(f)$ is well-defined and holomorphic.

Solution : Set $g(y, s):=f(y) y^{s-1}$ and for $n \in \mathbb{Z}_{>1} G_{n}(s):=\int_{\frac{1}{n}}^{n} g(y, s) d y$. Clearly $g(y, s)$ is holomorphic in s. Recall that for holomorphic functions $g(y, s)$ (in $s)$ we have:

$$
\frac{d}{d \bar{s}} \int_{A} g(y, s) d y=\int_{A} \frac{\partial}{\partial \bar{s}} g(y, s) d y=\int_{A} 0 d y=0
$$

So clearly $G_{n}(s)$ is still holomorphic and $\lim _{n \rightarrow \infty} G_{n}(s)=\mathcal{M}_{f}(s)=: G(s)$.
Moreover the G_{n} 's converges locally uniformly:
For $s \in K$ (K compact) we have $\alpha<c_{1}<\operatorname{Re}(s)<c_{2}<\beta$ for some constants c_{1} and c_{2}. So we have the following estimate:

$$
\begin{aligned}
\left|G_{n}(s)-G(s)\right| & \leq \int_{0}^{\frac{1}{n}}|g(y, s)| d y+\int_{n}^{\infty}|g(y, s)| d y \\
& =\int_{0}^{\frac{1}{n}}|f(y)| y^{\operatorname{Re}(s)-1} d y+\int_{n}^{\infty}|f(y)| y^{\operatorname{Re}(s)-1} d y \\
& \leq \int_{0}^{\frac{1}{n}}|f(y)| y^{c_{1}-1} d y+\int_{n}^{\infty}|f(y)| y^{c_{2}-1} d y
\end{aligned}
$$

Where the last expression tends to 0 (for $n \rightarrow \infty$) by our assumptions ($c_{1}, c_{2} \in\langle\alpha, \beta\rangle$ and $g(y, s) \in L^{1}\left(\mathbb{R}^{+}\right)$with respect to $\left.y\right)$. So we have a uniform bound for $\left|G_{n}(s)-G(s)\right|$. Hence the convergence is locally uniform. So the theorem of Weierstrass tells us that $G(s)$ is holomorphic.
b) Prove the following identities for $\mathcal{M}(f)$:

$$
\begin{aligned}
\mathcal{M}\left(y^{\nu} f(y)\right)(s) & =\mathcal{M}(f(y))(s+\nu) \\
\mathcal{M}(f(\nu y))(s) & =\nu^{-s} \mathcal{M}(f(y))(s) \\
\mathcal{M}\left(f\left(y^{\nu}\right)\right)(s) & =\frac{1}{\nu} \mathcal{M}(f(y))\left(\frac{s}{\nu}\right) \\
\mathcal{M}\left(\frac{1}{y} f\left(\frac{1}{y}\right)\right)(s) & =\mathcal{M}(f(y))(1-s) \\
\frac{d}{d s} \mathcal{M}(f(y))(s) & =\mathcal{M}(f(y) \log y)(s) \\
\mathcal{M}\left(\frac{d}{d y} f(y)\right)(s) & =-(s-1) \mathcal{M}(f(y))(s-1)
\end{aligned}
$$

where $\nu>0$.

Solution :

$$
\begin{aligned}
\mathcal{M}\left(y^{\nu} f(y)\right)(s) & =\int_{0}^{\infty} f(y) y^{s+\nu} \frac{d y}{y}=\mathcal{M}(f(y))(s+\nu) \\
\mathcal{M}(f(\nu y))(s) & =\int_{0}^{\infty} f(\nu y) y^{s} \frac{d y}{y} \stackrel{\left(y^{\prime}=y \nu\right)}{=} \nu^{-s} \int_{0}^{\infty} f\left(y^{\prime}\right) y^{\prime s} \frac{d y^{\prime}}{y^{\prime}}=\nu^{-s} \mathcal{M}(f(y))(s) \\
\mathcal{M}\left(f\left(y^{\nu}\right)\right)(s) & =\int_{0}^{\infty} f\left(y^{\nu}\right) y^{s} \frac{d y}{y} \stackrel{\left(y^{\prime}=y^{\nu}\right)}{=} \frac{1}{\nu} \int_{0}^{\infty} f\left(y^{\prime}\right) y^{\frac{s}{\nu}} \frac{d y^{\prime}}{y^{\prime}}=\frac{1}{\nu} \mathcal{M}(f(y))\left(\frac{s}{\nu}\right) \\
\mathcal{M}\left(\frac{1}{y} f\left(\frac{1}{y}\right)\right)(s) & =\int_{0}^{\infty} \frac{1}{y} f\left(\frac{1}{y}\right) y^{s} \frac{d y}{y} \stackrel{\left(y^{\prime}=\frac{1}{y}\right)}{=} \int_{0}^{\infty} y^{\prime} f\left(y^{\prime}\right) y^{\prime-s} \frac{d y}{y}=\mathcal{M}(f(y))(1-s) \\
\frac{d}{d s} \mathcal{M}(f(y))(s) & =\int_{0}^{\infty} f(y) \frac{d}{d s} y^{s} \frac{d y}{y}=\int_{0}^{\infty} f(y) \log y y^{\frac{d y}{y}}=\mathcal{M}(f(y) \log y)(s) \\
\mathcal{M}\left(\frac{d}{d y} f(y)\right)(s) & =\int_{0}^{\infty} \frac{d}{d y} f(y) y^{s} \frac{d y}{y}=\left.f(y) y^{s-1}\right|_{0} ^{\infty}-\int_{0}^{\infty} f(y)(s-1) y^{s-1} \frac{d y}{y} \\
& =0-(s-1) \mathcal{M}(f(y))(s-1)
\end{aligned}
$$

3. Recall the Gamma function $\Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s} \frac{d t}{t}$ defined for all $s \in \mathbb{C}$ with $\operatorname{Re}(s)>0$. Prove that
a) The function $\Gamma(s)$ can be analytically continued to the whole complex plane into a meromorphic function whose poles are exactly non-positive integers and satisfies the functional equation $\Gamma(s+1)=\Gamma(s)$.
Solution : One can prove directly $\Gamma(s+1)=s \Gamma(s)$ using the definition of $\Gamma(s)$ and integration by parts ;

$$
\Gamma(s+1)=\int_{0}^{\infty} e^{-t} t^{s} d t=\int_{0}^{\infty} e^{-t}\left(s t^{s-1}\right) d t=s \Gamma(s)
$$

This allows to extend $\Gamma(s)=\frac{1}{s} \Gamma(s+1)$ to the whole complex s-plane, with simple poles at each non-positive integer $s=-n, n \in \mathbb{N}_{0}$.
b) Show that the meromorphic continuation satisfies $\Gamma(s)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(k+s)}+\int_{1}^{\infty} e^{-y} y^{s} \frac{d y}{y}$ and conclude that $\operatorname{Res}(\Gamma,-n)=\frac{(-1)^{n}}{n!}$.

Solution :

$$
\begin{aligned}
\int_{0}^{1} e^{-y} y^{s} \frac{d y}{y} & =\int_{0}^{1} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} y^{k} y^{s} \frac{d y}{y}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \int_{0}^{1} y^{k+s} \frac{d y}{y} \\
& =\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \frac{y^{k+s}}{k+s}\right|_{0} ^{1}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(k+s)}
\end{aligned}
$$

Hence $\Gamma(s)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(k+s)}+\int_{1}^{\infty} e^{-y} y^{s} \frac{d y}{y}$. Since the second part (the integral) is an entire function on \mathbb{C} we only have to consider the first part (the sum) for the residues:

$$
\operatorname{Res}(\Gamma,-n)=\lim _{s \rightarrow-n}(n+s) \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(k+s)}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \lim _{s \rightarrow-n} \frac{n+s}{k+s}=\frac{(-1)^{n}}{n!}
$$

c) Prove the reflection formula $\Gamma(1-s) \Gamma(s)=\frac{\pi}{\sin (\pi s)}$ and conclude that $\frac{1}{\Gamma(s)}$ is an entire function of s.
Solution : Set $g(s):=\Gamma(1-s) \Gamma(s)-\frac{\pi}{\sin (\pi s)}$. By part $\left.a\right)$ we have that $g(s)$ is holomorphic on $\mathbb{C} \backslash \mathbb{Z}$. Let $-n \in \mathbb{Z}_{\leq 0}$. By task $3 b$ we have:

$$
\operatorname{Res}(\Gamma(1-s) \Gamma(s),-n)=\Gamma(n+1) \frac{(-1)^{n}}{n!}=(-1)^{n}=\operatorname{Res}\left(\frac{\pi}{\sin (\pi s)},-n\right)
$$

Let $n \in \mathbb{Z}_{>0}$. By task $3 b$ we have:

$$
\operatorname{Res}(\Gamma(1-s) \Gamma(s), n)=-\frac{(-1)^{n-1}}{(n-1)!} \Gamma(n)=(-1)^{n}=\operatorname{Res}\left(\frac{\pi}{\sin (\pi s)}, n\right)
$$

So $g(s)$ has removable singularities at $s \in \mathbb{Z}$ and is therefore an entire function. Note that $\frac{1}{|\sin (\pi s)|}$ is bounded for $|\Im(s)|>1$. Since $s \in \mathbb{Z}$ are the only poles in \mathbb{C} of the continious function $\sin (\pi s)$ we also have that $\frac{1}{|\sin (\pi s)|}$ is bounded in any compactum which does not contain elements of \mathbb{Z}. So $\sin (\pi s)$ is bounded on $\mathbb{C} \backslash D$ for any region D containing \mathbb{Z}. So by equation

$$
\begin{equation*}
|\Gamma(s)| \leq \int_{0}^{1} e^{-y} y^{\frac{1}{N}} \frac{d y}{y}+\int_{1}^{\infty} e^{-y} y^{N} \frac{d y}{y} \tag{1}
\end{equation*}
$$

we have that $g(s)$ is bounded on $\langle\varepsilon, 1-\varepsilon>$ for any $\varepsilon>0$. But by the functional equation $\Gamma(1-s)=\frac{1}{1-s} \Gamma(2-s)$ and the remarks above we see that $g(s)$ remains bounded on $\mathbb{C} \backslash D$. But the singularities at $s \in \mathbb{Z}$ are removable so $g(s)$ is bounded around $s \in \mathbb{Z}$ and thus bounded on \mathbb{C} and therefore constant. Since $\lim _{y \rightarrow \infty} g(s)=0$ we get $g(s) \equiv 0$.
By Euler's reflection formula and the fact that $\sin (\pi s)$ is entire we immediately get that $\Gamma(s) \Gamma(1-s) \neq 0$ on \mathbb{C}. So $\Gamma(s) \neq 0$ on \mathbb{C}. Hence $\frac{1}{\Gamma(s)}$ is entire.
d) Compute $\Gamma\left(\frac{1}{2}\right)$ and prove the duplication formula $\Gamma(s) \Gamma\left(s+\frac{1}{2}\right)=2^{\frac{1}{2}-2 s} \sqrt{2 \pi} \Gamma(2 s)$.

Solution : By applying the reflection formula with $s=1 / 2$, we obtain $\Gamma(1 / 2)=\sqrt{\pi}$. We define the Beta function:

$$
B(r, s):=\frac{\Gamma(r) \Gamma(s)}{\Gamma(r+s)}=\int_{0}^{1} z^{r-1}(1-z)^{s-1} d z
$$

The last equality follows from:

$$
\begin{aligned}
& \Gamma(r) \Gamma(s)=\int_{0}^{\infty} \int_{0}^{\infty} e^{-(u+v)} u^{r-1} v^{s-1} d u d v \\
&(\sigma==u+v) \int_{\sigma \geq u \geq 0} e^{-\sigma} u^{r-1}(\sigma-u)^{s-1} d u d \sigma \\
&\left(z=\frac{u}{\sigma}\right) \quad \int_{\substack{0 \leq z \leq 1 \\
u \geq 0}} e^{-\sigma}\left(z^{r-1} \sigma^{r-1}\right)\left((1-z)^{s-1} \sigma^{s-1}\right)(\sigma d z d \sigma) \\
&=\int_{0}^{1} z^{r-1}(1-z)^{s-1} d z \int_{0}^{\infty} e^{-\sigma} \sigma^{r+s-1} d \sigma \\
&=\left(\int_{0}^{1} z^{r-1}(1-z)^{s-1} d z\right) \Gamma(r+s)
\end{aligned}
$$

If we make the substitution $z=x^{2}$ we get:

$$
B(r, s)=\int_{0}^{1} x^{2(r-1)}\left(1-x^{2}\right)^{s-1}(2 x d x)=2 \int_{0}^{1} x^{2 r-1}\left(1-x^{2}\right)^{s-1} d x
$$

On the other hand if we set $r=s$ and make the substitution $z=\frac{1+x}{2}$ we get:

$$
\begin{aligned}
\frac{\Gamma(s)^{2}}{\Gamma(2 s)} & =B(s, s)=\int_{-1}^{1}\left(\frac{1+x}{2}\right)^{s-1}\left(1-\frac{1+x}{2}\right)^{s-1}\left(\frac{1}{2} d x\right) \\
& =\frac{1}{2} \int_{-1}^{1}\left(\frac{1+x}{2}\right)^{s-1}\left(\frac{1-x}{2}\right)^{s-1} d x \\
& =\frac{1}{2} \frac{1}{2^{2(s-1)}} \int_{-1}^{1}\left(1-x^{2}\right)^{s-1} d x=2^{1-2 s}\left(2 \int_{0}^{1}\left(1-x^{2}\right)^{s-1} d x\right) \\
& =2^{1-2 s} B\left(\frac{1}{2}, s\right)=2^{1-2 s} \frac{\Gamma\left(\frac{1}{2}\right) \Gamma(s)}{\Gamma\left(s+\frac{1}{2}\right)}
\end{aligned}
$$

Where we used the previous result in the second last equality. If we solve this equation for $\Gamma(2 s)$ using $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$ we get:

$$
\Gamma(2 s)=\frac{1}{\sqrt{\pi}} 2^{2 s-1} \Gamma(s) \Gamma\left(s+\frac{1}{2}\right)
$$

e) Show that

$$
\begin{aligned}
\mathcal{M}\left(e^{-y^{2}}\right)(s) & =\frac{1}{2} \Gamma\left(\frac{s}{2}\right) & & \text { for any } s \in H(0) \\
\mathcal{M}\left(\frac{e^{-y}}{1-e^{-y}}\right)(s) & =\Gamma(s) \zeta(s) & & \text { for any } s \in H(1)
\end{aligned}
$$

Solution : The first identity follows from the change of variables $x=y^{2}$ and the domain of definition remains the same.

Let $g(y, s)=\frac{e^{-y}}{1-e^{-y}} y^{s-1}$. For $y>1$ we have the bound $|g(y, s)| \leq \frac{e}{e-1} e^{-y} y^{\operatorname{Re}(s)-1}$. Let $0 \leq y \leq 1$. Since $1+y \leq e^{y}$ we have:

$$
|g(y, s)| \leq \frac{e^{-y}}{1-\frac{1}{1+y}} y^{\operatorname{Re}(s)-1}=\frac{e^{-y}(1+y)}{y} y^{\operatorname{Re}(s)-1} \leq 2 e^{-y} y^{\operatorname{Re}(s)}
$$

Comparing both results we get for $y \in \mathbb{R}^{+}:|g(y, s)| \leq 2 e^{-y} y^{\operatorname{Re}(s)}$. Hence, $\langle 1, \infty\rangle$ is the fundamental strip for $\frac{e^{-y}}{1-e^{-y}}$.
By the second property of exercise $2 b$ we have:

$$
\begin{aligned}
\mathcal{M}\left(\frac{e^{-y}}{1-e^{-y}}\right)(s) & =\int_{0}^{\infty} \sum_{n=1}^{\infty} e^{-y n} y^{s} \frac{d y}{y}=\sum_{n=1}^{\infty} \mathcal{M}\left(e^{-y n}\right)(s)=\sum_{n=1}^{\infty} n^{-s} \mathcal{M}\left(e^{-y}\right)(s) \\
& =\zeta(s) \Gamma(s)
\end{aligned}
$$

4. a) Take a modular form $f \in \mathcal{M}_{k}(\Gamma)$ with q-expansion $f=\sum a(n) q^{n}$. Let χ be a character $\bmod p$, where p is a prime, and set

$$
f_{\chi}(z)=\sum a(n) \chi(n) q^{n}
$$

Show that $f_{\chi} \in \mathcal{M}_{k}\left(\Gamma_{0}\left(p^{2}\right), \chi^{2}\right)$, i.e.

$$
f_{\chi}(\gamma z)=\chi(d)^{2}(c z+d)^{k} f(z) .
$$

Moreover, show that if $f \in \mathcal{S}_{k}(\Gamma)$, then $f_{\chi} \in \mathcal{S}_{k}\left(\Gamma_{0}\left(p^{2}\right), \chi^{2}\right)$.
Solution : We twist f_{χ} by the Gauss sum $G(1, \bar{\chi})$ and obtain (recall ex 1 , serie 4)

$$
\begin{aligned}
G(1, \bar{\chi}) f_{\chi} & =\sum_{n \geq 0}(G(1, \bar{\chi}) \chi(n)) a(n) q^{n}=\sum_{n \geq 0} G(n, \bar{\chi}) a(n) q^{n} \\
& =\sum_{n \geq 0}\left(\sum_{m \bmod p} \bar{\chi}(m) e^{2 \pi i \frac{n m}{p}}\right) a(n) q^{n}=\left.\sum_{m \bmod p} \bar{\chi}(m) f\right|_{k}\left(\begin{array}{cc}
1 & m / p \\
1
\end{array}\right) .
\end{aligned}
$$

Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}\left(p^{2}\right)$. We will show that

$$
\left.G(1, \bar{\chi}) f_{\chi}\right|_{k} \gamma=G(1, \bar{\chi}) \chi(d)^{2} f_{\chi}
$$

Observe that

$$
\left(\begin{array}{cc}
1 & m / p \\
& 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a+\frac{m}{p} c & b+\frac{d m}{p} \\
c & d
\end{array}\right) .
$$

This product might not be in $\Gamma_{0}\left(p^{2}\right)$ since the upper right entry is not necessarily integral. However,

$$
\left(\begin{array}{cc}
a+\frac{m}{p} c & b+\frac{d m}{p} \\
c & d
\end{array}\right)\left(\begin{array}{cc}
1 & -d^{2} \frac{m}{p} \\
1
\end{array}\right)=\left(\begin{array}{cc}
a+\frac{m}{p} c & b-\frac{b c d m}{p}-\frac{c d^{2} m^{2}}{p^{2}} \\
c & d-\frac{m}{p} d^{2} c
\end{array}\right)=: \gamma^{\prime} \in \Gamma_{0}\left(p^{2}\right) .
$$

It now follows that

$$
\begin{aligned}
\left.G(1, \bar{\chi}) f_{\chi}\right|_{k} \gamma & =\left.\sum_{m \bmod p} \bar{\chi}(m) f\right|_{k} \gamma^{\prime}\left(\begin{array}{cc}
1 & d^{2} \frac{m}{p} \\
& 1
\end{array}\right)=\left.\chi(d)^{2} \sum_{k \bmod p} \bar{\chi}(k)\left(\left.f\right|_{k} \gamma^{\prime}\right)\right|_{k}\left(\begin{array}{cc}
1 & \frac{k}{p} \\
& 1
\end{array}\right) \\
& =\chi(d)^{2} G(1, \bar{\chi})\left(\left.f\right|_{k} \gamma^{\prime}\right)_{\chi}=\chi(d)^{2} G(1, \bar{\chi}) f_{\chi} .
\end{aligned}
$$

Finally, one can read immediately from the q-expansion for f_{χ} that it is holomorphic at infinity (resp. vanishes at infinity) if f does.
b) Given N a positive integer, let $\omega_{N}:=\left(\begin{array}{ll} & -1 \\ & \text {. Show that } \omega_{N} \text { normalizes } \Gamma_{0}(N) \text { and }{ }^{-} \text {. }\end{array}\right.$ that if $f \in \mathcal{M}_{k}\left(\Gamma_{0}(N)\right)$, then

$$
\left.f\right|_{\omega_{N}}=N^{-k / 2} z^{-k / 2} f\left(\frac{-1}{N z}\right)
$$

is also in $\mathcal{M}_{k}\left(\Gamma_{0}(N)\right)$.
Solution : The direct computation

$$
\left(\begin{array}{ll}
& 1 \\
-N &
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
& -1 \\
N &
\end{array}\right)=\left(\begin{array}{cc}
d N & -c \\
-b N^{2} & a N
\end{array}\right)=: \gamma^{\prime},
$$

once you divide both sides by N proves that ω_{N} normalizes $\Gamma_{0}(N)$.
Let $\gamma \in \Gamma_{0}(N)$, then

$$
\left.f\right|_{\omega_{N}} \gamma=f\left|\omega_{N} \gamma=f\right| \gamma^{\prime} \omega_{N}=\left.f\right|_{\omega_{N}} .
$$

c) Let $f \in \mathcal{S}_{k}(\Gamma)$, and let χ be a character $\bmod p$. Show that $\left.f_{\chi}\right|_{\omega_{p^{2}}}=\frac{\tau(\chi)^{2}}{p} f_{\bar{\chi}}$, where $\tau(\chi)=G(1, \chi)$ denotes the Gauss sum.
Solution : We know from last exercise sheet that $|G(1, \chi)|=p$. We show the therefore equivalent statement

$$
\left.|G(1, \chi)| f_{\chi}\right|_{\omega_{p}^{2}}=G(1, \chi) f_{\bar{\chi}}
$$

By the same computation that in part a), we can show that

$$
G(1, \chi) f_{\bar{\chi}}=\left.\sum_{m \bmod p} \chi(m) f\right|_{k}\left(\begin{array}{cc}
1 & m / p \\
& 1
\end{array}\right)=\overline{G(1, \chi)} f_{\chi} .
$$

It follows from the direct computation

$$
\left(\begin{array}{cc}
1 & m / p \\
& 1
\end{array}\right)\left(\begin{array}{ll}
p^{2} & -1 \\
p^{2}
\end{array}\right)\left(\begin{array}{cc}
1 & -m / p \\
& 1
\end{array}\right)=\left(\begin{array}{cc}
m p & -1-m^{2} \\
p^{2} & -m p
\end{array}\right)=: \gamma \in \Gamma
$$

that

$$
\left.f\right|_{k}\left(\begin{array}{cc}
1 & m / p \\
& 1
\end{array}\right)\left(\begin{array}{cc}
& -1 \\
p^{2} &
\end{array}\right)=\left.f\right|_{k} \gamma\left(\begin{array}{cc}
1 & m / p \\
& 1
\end{array}\right)=\left.f\right|_{k}\left(\begin{array}{cc}
1 & m / p \\
& 1
\end{array}\right)
$$

and we conclude.
5. Let again $f \in \mathcal{S}_{k}(\Gamma)$, and let χ be a Dirichlet character $\bmod p$. Set

$$
L(f, \chi, s)=\sum_{n \geq 1} \frac{a(n) \chi(n)}{n^{s}} \quad \text { and } \quad \Lambda(f, \chi, s)=\left(\frac{p}{2 \pi}\right)^{s} \Gamma(s) L(f, \chi, s) .
$$

Prove the functional equation $\Lambda(f, \chi, s)=i^{k} \frac{\tau(\chi)^{2}}{p} \Lambda(f, k-s, \bar{\chi})$.
Solution : Consider the function $\widetilde{f}_{\chi}(y):=f_{\chi}(i y)$. Then

$$
\mathcal{M}\left(\widetilde{f}_{\chi}\right)(s)=\int_{0}^{\infty} f_{\chi}(i y) y^{s} \frac{d y}{y}=(2 \pi)^{-s} \Gamma(s) L(f, \chi, s) .
$$

On the other hand, we obtain from the change of variables $y=1 /\left(p^{2} u\right)$ that

$$
\mathcal{M}\left(\widetilde{f}_{\chi}\right)(s)=p^{-2 s} \int_{0}^{\infty} f_{\chi}\left(\frac{i}{p^{2} u}\right) u^{-s} \frac{d u}{u} .
$$

From Ex. 4, part c), we know that

$$
\left.f_{\chi}\right|_{\omega_{p}^{2}}(i u)=(i p u)^{-k} f_{\chi}\left(\frac{i}{p^{2} u}\right)=\frac{\tau(\chi)^{2}}{p} f_{\bar{\chi}}(i u)
$$

hence

$$
\mathcal{M}\left(\widetilde{f_{\chi}}\right)(s)=p^{-2 s}(i p)^{k} \frac{\tau(\chi)^{2}}{p} \int_{0}^{\infty} f_{\bar{\chi}}(i u) u^{k-s} \frac{d u}{u}=p^{-2 s}(i p)^{k} \frac{\tau(\chi)^{2}}{p} \mathcal{M}\left(\widetilde{f_{\bar{\chi}}}\right)(k-s)
$$

that is,

$$
(2 \pi)^{-s} \Gamma(s) L(f, \chi, s)=p^{-2 s}(i p)^{k} \frac{\tau(\chi)^{2}}{p}(2 \pi)^{-(k-s)} \Gamma(k-s) L(f, \bar{\chi}, k-s) .
$$

This equality is equivalent to $\Lambda(f, \chi, s)=i^{k} \frac{\tau(\chi)^{2}}{p} \Lambda(f, \bar{\chi}, k-s)$.

