Solutions 7

1. Let $z \in \mathbb{H}$ and consider the Θ-function defined by

$$
\Theta_{z}(t)=\sum_{m, n \in \mathbb{Z}} e^{-\pi t \frac{|m z+n|^{2}}{y}}
$$

for all $t>0$.
a) Show that Θ_{z} satisfies the functional equation $\Theta_{z}(t)=\frac{1}{t} \Theta_{z}\left(\frac{1}{t}\right)$.

Proof:

$$
\begin{aligned}
\Theta_{z}(t) & \stackrel{\text { def }}{=} \sum_{m, n \in \mathbb{Z}} e^{-\pi \frac{t}{y}\left((m x+n)^{2}+(m y)^{2}\right)} \\
& =\sum_{m \in \mathbb{Z}} e^{-\pi \frac{t}{y}(m y)^{2}} \sum_{n \in \mathbb{Z}} e^{-\pi \frac{t}{y}(m x+n)^{2}} \\
& \stackrel{(*)}{=} \sum_{m \in \mathbb{Z}} e^{-\pi \frac{t}{y}(m y)^{2}} \sum_{n \in \mathbb{Z}} e^{2 \pi i m x n} \sqrt{\frac{y}{t}} e^{-\pi \frac{y}{t} n^{2}} \\
& =\sqrt{\frac{y}{t}} \sum_{m, n \in \mathbb{Z}} e^{-\pi t y m^{2}} e^{2 \pi i m x n} e^{-\pi \frac{y}{t} n^{2}} \\
& =\sqrt{\frac{y}{t}} \sum_{n \in \mathbb{Z}} e^{-\pi\left(\frac{x^{2}+y^{2}}{t y}\right) n^{2}} \sum_{m \in \mathbb{Z}} e^{-\pi t y\left(m+\frac{i n x}{t y}\right)^{2}} \\
& \stackrel{(\stackrel{)}{=}}{=} \sqrt{\frac{y}{t}} \sum_{n \in \mathbb{Z}} e^{-\pi\left(\frac{x^{2}+y^{2}}{t y}\right) n^{2}} \sum_{m \in \mathbb{Z}} \frac{1}{\sqrt{t y}} e^{-\pi \frac{m^{2}}{t y}} e^{-\frac{\pi}{t y}(2 m n x)} \\
& =\frac{1}{t} \sum_{m, n \in \mathbb{Z}} e^{-\frac{\pi}{t y}\left(n^{2}\left(x^{2}+y^{2}\right)+m^{2}+2 m n x\right)} \stackrel{\text { def }}{=} \frac{1}{t} \Theta_{z}\left(\frac{1}{t}\right)
\end{aligned}
$$

where (*) indicates that we applied the Poisson summation formula.

For all $s \in\langle 1, \infty\rangle$, let

$$
E(z, s)=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} \operatorname{Im}(\gamma z)^{s}=\sum_{\substack{c, d \in \mathbb{Z} \\(c, d)=1}} \frac{y^{s}}{|c z+d|^{2 s}}
$$

and

$$
E^{*}(z, s)=\pi^{-s} \Gamma(s) 2 \zeta(2 s) E(z, s)=\pi^{-s} \Gamma(s) \sum_{\substack{m, n \in \mathbb{Z} \\(m, n) \neq(0,0)}} \frac{y^{s}}{|m z+n|^{2 s}} .
$$

b) Check that $E(\gamma z, s)=E(z, s)$ for all $\gamma \in \Gamma$ and show that

$$
E^{*}(z, s)=\int_{0}^{\infty}\left(\Theta_{z}(t)-1\right) t^{s} \frac{d t}{t}
$$

Solution: Let $\gamma^{\prime} \in \Gamma$, then the collection of elements $\gamma \gamma^{\prime}$ where γ runs through a system of coset representatives for $\Gamma_{\infty} \backslash \Gamma$ is also a system of coset representatives for that quotient, hence $E\left(\gamma^{\prime} z, s\right)=E(z, s)$ and this holds for all $\gamma^{\prime} \in \Gamma$.
Observe that

$$
\Theta_{z}(t)-1=\sum_{\substack{m, n \in \mathbb{Z} \\(m, n) \neq(0,0)}} e^{-\pi \frac{t}{y}|m z+n|^{2}}
$$

and

$$
\begin{aligned}
\int_{\mathbb{R}_{>0}}\left(\Theta_{z}(t)-1\right) t^{s} \frac{d t}{t} & =\sum_{\substack{m, n \in \mathbb{Z} \\
(m, n) \neq(0,0)}} \mathcal{M}\left(t \mapsto e^{-\pi \frac{t}{y}|m z+n|^{2}}\right)(s) \\
& \stackrel{(* *)}{=} \mathcal{M}\left(t \mapsto e^{-t}\right)(s) \sum_{\substack{m, n \in \mathbb{Z} \\
(m, n) \neq(0,0)}}\left(\frac{\pi|m z+n|^{2}}{y}\right)^{-s}=E^{*}(z, s)
\end{aligned}
$$

where in $(* *)$ we applied the second transformation property of Mellin transforms that we proved in exercise $2 b$ of problem set 5 .
c) Show that $E^{*}(z, s)$ has a meromorphic continuation to the whole complex s-plane with single poles at $s=0$ and $s=1$ with residues -1 and 1 respectively. Finally, prove the functional equation $E^{*}(z, 1-s)=E^{*}(z, s)$.

Solution : We decompose the integral representation of $E^{*}(z, s)$ into the sum of the two integrals

$$
E^{*}(z, s)=\int_{0}^{1}\left(\Theta_{z}(t)-1\right) t^{s} \frac{d t}{t}+\int_{1}^{\infty}\left(\Theta_{z}(t)-1\right) t^{s} \frac{d t}{t}
$$

Observe that the first integral is analytic for $s \in\langle 1, \infty\rangle$ while the second integral is entire
in that fundamental strip. For the first integral, we have

$$
\begin{aligned}
\int_{0}^{1}\left(\Theta_{z}(t)-1\right) t^{s} \frac{d t}{t} & =\int_{1}^{\infty}\left(\Theta_{z}\left(\frac{1}{t}\right)-1\right) t^{-s} \frac{d t}{t} \\
& \stackrel{a)}{=} \int_{1}^{\infty}\left(\Theta_{z}(t)-\frac{1}{t}\right) t^{1-s} \frac{d t}{t} \\
& =\int_{1}^{\infty}\left(\Theta_{z}(t)-1\right) t^{1-s} \frac{d t}{t}+\int_{1}^{\infty}\left(1-\frac{1}{t}\right) t^{1-s} \frac{d t}{t} \\
& =\int_{1}^{\infty}\left(\Theta_{z}(t)-1\right) t^{1-s} \frac{d t}{t}+\frac{1}{s(1-s)}
\end{aligned}
$$

Again, the first integral is entire in s and it follows that $E^{*}(z, s)$ has a meromorphic continuation with poles at $s=0,1$ and $E^{*}(z, 1-s)=E^{*}(z, s)$.
2. Let $\varphi: \mathbb{H} \rightarrow \mathbb{C}$ be an analytic function such that $\varphi(\gamma z)=\varphi(z)$ for all $\gamma \in \Gamma$ and $\varphi(z)=$ $O\left(y^{-C}\right)$ as $y \rightarrow \infty$ for all $C>0$. Such a function has a Fourier expansion of the form $\varphi(z)=\sum_{n \in \mathbb{Z}} \varphi_{n}(y) e^{2 \pi i n x}$ where $\varphi_{n}(y)=\int_{0}^{1} \varphi(x+i y) e^{-2 \pi i n x} d x$. Set

$$
\Lambda_{\varphi}(s)=\pi^{-s} \Gamma(s) 2 \zeta(2 s) \mathcal{M}\left(\varphi_{0}\right)(s-1)
$$

for all $s \in\langle 1, \infty\rangle$.
a) Show that $\mathcal{M}\left(\varphi_{0}\right)(s)$ is indeed well-defined on the fundamental strip $\langle 0, \infty\rangle$ and that it is bounded in every vertical strip strictly contained in $\langle 0, \infty\rangle$.

Proof: First of all, we show that a Γ-invariant function φ that decays rapidly in the cusp as described above, is a bounded function. By invariance, φ can be seen as a function on the closure $\overline{\mathcal{F}}$ of the standard fundamental domain for Γ. Now,

$$
\overline{\mathcal{F}}=(\overline{\mathcal{F}} \cap\{y \leq C\}) \cup(\overline{\mathcal{F}} \cap\{y>C\}) .
$$

For any positive constant C, the first component defines a compact region on which φ is then necessarily bounded. We can choose C sufficiently large so that φ, which is rapidly decaying as $y \rightarrow \infty$, is also bounded on the second component.
Then $\varphi_{0}(y)=\int_{0}^{1} \varphi(x+i y) e^{-2 \pi i n x} d x$ is also bounded and rapidly decaying in the cusp. Let $s \in\langle a, b\rangle$, a vertical strip strictly contained in the fundamental strip $\langle 0, \infty\rangle$. Then

$$
\left|\mathcal{M}\left(\varphi_{0}\right)(s)\right| \leq \int_{0}^{1}\left|\varphi_{0}(y)\right| y^{a} \frac{d y}{y}+\int_{1}^{M}\left|\varphi_{0}(y)\right| y^{b} \frac{d y}{y}+\int_{M}^{\infty}\left|\varphi_{0}(y)\right| y^{b} \frac{d y}{y}<\infty
$$

where we chose M such that $\left|\varphi_{0}(y)\right| \ll y^{-b-1}$ whenever $y \geq M$.
b) Check that Λ_{φ} has the following integral representation

$$
\Lambda_{\varphi}(s)=\left\langle\varphi, \overline{E^{*}(\cdot, s)}\right\rangle=\int_{\mathcal{F}} \varphi(z) E^{*}(z, s) d \mu(z)
$$

where \mathcal{F} denotes a fundamental domain for Γ.

Solution: Note that it suffices to show that $\mathcal{M}\left(\varphi_{0}\right)(s-1)=\langle\varphi, \overline{E(\cdot, s)}\rangle$. And indeed,
$\mathcal{M}\left(\varphi_{0}\right)(s-1) \stackrel{\text { def }}{=} \int_{0}^{\infty} \varphi_{0}(y) y^{s} \frac{d y}{y^{2}} \stackrel{\text { def }}{=} \int_{0}^{\infty} \int_{0}^{1} \varphi(x+i y) d x y^{s} \frac{d y}{y^{2}}=\int_{\mathcal{F}_{\infty}} \varphi(z) y^{s} d \mu(z)$, where $\mathcal{F}_{\infty}=\{z \in \mathbb{H}: x \in[0,1]\}$. One can choose a collection of representatives $\left(\alpha_{j}\right)$ such that $\mathcal{F}_{\infty}=\bigcup_{\alpha \in \Gamma_{\infty} \backslash \Gamma} \alpha^{-1} \mathcal{F}$. Then

$$
\begin{aligned}
\int_{\mathcal{F}_{\infty}} \varphi(z) y^{s} d \mu(z) & =\sum_{\alpha \in \Gamma_{\infty} \backslash \Gamma} \int_{\alpha^{-1} \mathcal{F}} \varphi(z) y^{s} d \mu(z) \\
& =\sum_{\alpha \in \Gamma_{\infty} \backslash \Gamma} \int_{\mathcal{F}} \varphi(z) \operatorname{Im}(\alpha z)^{s} d \mu(z)=\int_{\mathcal{F}} \varphi(z) E(z, s) d \mu(z) .
\end{aligned}
$$

c) Prove that Λ_{φ} has a meromorphic continuation to the whole complex plane with simple poles at $s=0$ and $s=1$ with residues $\mp \int_{\mathcal{F}} \varphi(z) d \mu(z)$. It is bounded in any vertical strip (that does not contain a pole) and satisfies the functional equation

$$
\Lambda_{\varphi}(s)=\Lambda_{\varphi}(1-s) .
$$

N.B. This is the simplest case of the Rankin-Selberg method.

Proof: By the assumptions on φ and ex 1 c$), \Lambda_{\varphi}$ is analytic for $s \neq 0,1$, where it admits simple poles, coming from the simple poles of $E^{*}(z, s)$. We can conclude that it is moreover bounded on vertical strips from part a) of this exercise. Finally,

$$
\operatorname{Res}_{s=1}\left(\Lambda_{\varphi}\right)=\int_{\mathcal{F}} \operatorname{Res} \operatorname{Res}^{*}(z, s) \varphi(z) d \mu(z)=\int_{\mathcal{F}} \varphi(z) d \mu(z),
$$

and by the functional equation from 1c) $\operatorname{Res}\left(\Lambda_{\varphi}\right)(1)=-\operatorname{Res}\left(\Lambda_{\varphi}\right)(0)$.

Let $f=\sum a_{n} q^{n} \in \mathcal{S}_{k}(\Gamma)$ and $g=\sum b_{n} q^{n} \in \mathcal{M}_{k}(\Gamma)$ and set $\phi=f \bar{g} y^{k}$. We define

$$
\begin{aligned}
L(f \times g, s) & =2 \zeta(2 s-2 k+2) \sum_{n \geq 1} a_{n} \overline{b_{n}} n^{-s}, \\
\Lambda(f \times g, s) & =\pi^{k-1}(2 \pi)^{-2 s} \Gamma(s) \Gamma(s-k+1) L(f \times g, s) .
\end{aligned}
$$

For simplicity, we will assume that $b_{n}=\overline{b_{n}}$ for all n.
The L-series $L(f \times g, s)$ is called the Rankin-Selberg convolution of f and g.
d) Check that ϕ satisfies the same properties as the function φ at the beginning of the exercise. Show that for all $s \in\langle 0, \infty\rangle$

$$
\mathcal{M}\left(\phi_{0}\right)(s)=(4 \pi)^{-(s+k)} \Gamma(s+k) \sum_{n \geq 1} a_{n} \overline{b_{n}} n^{-(s+k)} .
$$

Solution: Clearly φ is analytic. Since f is a cusp form, $f(z)=O\left(y^{-C}\right)$ as $y \rightarrow \infty$ for any $C>0$. In particular, let $f(z)=O\left(y^{-C-k}\right)$ also holds. The function g is a modular form and therefore $g(z)=O(1)$, hence $\phi(z)=O\left(y^{-C}\right)$ as $y \rightarrow \infty$. Finally,

$$
\phi(\gamma z)=\frac{j(\gamma, z)^{k} \overline{j(\gamma, z)^{k}}}{|j(\gamma, z)|^{2 k}} \phi(z)=\phi(z)
$$

for all $\gamma \in \Gamma$ and $z \in \mathbb{H}$.
We compute
$\phi_{0}(y) \stackrel{\text { def }}{=} \int_{0}^{1} \phi(x+i y) d y=\sum_{m \geq 1} \sum_{n \geq 0} a_{m} b_{n} y^{k} e^{-2 \pi(m+n)} \int_{0}^{1} e^{2 \pi i(m-n) x} d x=\sum_{n \geq 1} a_{n} b_{n} y^{k} e^{-4 \pi n y}$.
By Hecke's estimate, $\left|a_{n}\right|=O\left(n^{\frac{k}{2}}\right)$ and $\left|b_{n}\right|=O\left(n^{k}\right)$. Hence

$$
\begin{aligned}
\mathcal{M}\left(\phi_{0}\right)(s) & =\sum_{n \geq 1} a_{n} b_{n} \int_{\mathbb{R}_{>0}} e^{-4 \pi n y} y^{s+k} \frac{d y}{y} \\
& =\sum_{n \geq 1} a_{n} b_{n}\left((4 \pi n)^{-(s+k)} \Gamma(s+k)\right) \\
& =(4 \pi)^{-(s+k)} \Gamma(s+k) \sum_{n \geq 1} \frac{a_{n} b_{n}}{n^{s+k}} .
\end{aligned}
$$

for all $s \in\langle k / 2+2, \infty\rangle$. We finally show that this actually holds on the strip $\langle 0, \infty\rangle$.
We assume that the sum doesn't converge absolutely anymore for $\operatorname{Re}(s) \leq \sigma$ and choose σ maximally. By contradiction we assume that $\sigma>0$. Note that the equality still holds for $s \in\left\langle\sigma+\frac{1}{N}, \infty>\right.$ for all $N>0$. Also note that $\operatorname{Im}(s)$ doesn't matter for the absolute convergence. Since the sum doesn't converge absolutely for $\operatorname{Re}(s) \leq \sigma$ we can (wlog) assume that the following series diverges as $N \rightarrow \infty$:

$$
S_{N}:=\sum_{n \geq 1} a_{n} \overline{b_{n}} n^{-\left(\sigma+\frac{1}{N}+k\right)}
$$

But on the other hand we have:

$$
S_{N}=(4 \pi)^{\sigma+\frac{1}{N}+k} \Gamma\left(\sigma+\frac{1}{N}+k\right) \mathcal{M}\left(\phi_{0}(y)\right)\left(\sigma+\frac{1}{N}\right)
$$

Which converges for $N \rightarrow \infty$ to $(4 \pi)^{\sigma+k} \Gamma(\sigma+k) \mathcal{M}\left(\phi_{0}(y)\right)(\sigma) \in \mathbb{C}$ (as shown before). This gives a contradiction. Hence the formula holds for $s \in\langle 0, \infty\rangle$.
e) Prove that $\Lambda(f \times g, s)$ has a meromorphic continuation to the whole complex plane with simple poles at $s=k$ and $s=k-1$ with residues $\pm\langle f, g\rangle$. It is bounded in any vertical strip (that does not contain a pole) and satisfies the functional equation

$$
\Lambda(f \times g, s)=\Lambda(f \times g, 2 k-1-s) .
$$

Hint: Show first that $\Lambda_{\phi}(s)=\Lambda(f \times g, s+k-1)$.

Proof: By the definitions,

$$
\Lambda(f \times g, s+k-1)=\frac{\pi^{k-1}}{4^{s+k-1}} 2 \zeta(2 s) \Gamma(s) \Gamma(s+k-1) \sum_{n \geq 1} \frac{a_{n} b_{n}}{n^{s+k-1}}
$$

and

$$
\begin{aligned}
\Lambda_{\phi}(s) & \stackrel{\text { def }}{=} \pi^{-s} \Gamma(s) 2 \zeta(2 s) \mathcal{M}\left(\phi_{0}\right)(s-1) \\
& \stackrel{2 d}{=} \frac{\pi^{-s}}{(4 \pi)^{s+k-1}} \frac{4^{s+k-1}}{\pi^{k-1}} \Lambda(f \times g, s+k-1)=\Lambda(f \times g, s+k-1)
\end{aligned}
$$

for all $s \in\langle 1, \infty\rangle$. Now we can derive the statement from the meromorphic continuation of Λ_{ϕ} and its properties established in exercise 2c.
3. The MacDonald-Bessel function is given by

$$
K_{s}(y)=\frac{1}{2} \int_{0}^{\infty} e^{-\frac{y}{2}\left(t+\frac{1}{t}\right)} t^{s} \frac{d t}{t}
$$

for all $y>0, s \in \mathbb{C}$. It is entire as a function in s and decays rapidly as $y \rightarrow \infty$. Moreover, one can show by a change of variable that $K_{s}(y)=K_{-s}(y)$.
a) Set

$$
I_{s}(a)=\int_{\mathbb{R}} \frac{e^{i a u}}{\left(u^{2}+1\right)^{s}} d u
$$

for all $a \in \mathbb{R}, s \in\langle 1 / 2, \infty\rangle$. Prove that

$$
\Gamma(s) I_{s}(a)= \begin{cases}\sqrt{\pi} \Gamma(s-1 / 2) & a=0 \\ 2 \sqrt{\pi}\left|\frac{a}{2}\right|^{s-1 / 2} K_{s-1 / 2}(|a|) & a \neq 0 .\end{cases}
$$

Proof:

$$
\begin{aligned}
\Gamma(s) I_{s}(a) & =\int_{0}^{\infty} \int_{-\infty}^{\infty} e^{-t} t^{s-1} \frac{e^{i a u}}{\left(u^{2}+1\right)^{s}} d u d t \\
& =\int_{0}^{\infty} \int_{-\infty}^{\infty} e^{-\left(u^{2}+1\right) t} t^{s-1} e^{i a u} d u d t \\
& =\int_{0}^{\infty}\left(\int_{-\infty}^{\infty} e^{-\left(u^{2}+1\right) t} e^{i a u} d u\right) t^{s} \frac{d t}{t}
\end{aligned}
$$

If $a=0$, then the inner integral is equal to $\sqrt{\pi} e^{-t} t^{-1 / 2}$, and

$$
\Gamma(s) I_{s}(0)=\sqrt{\pi} \int_{0}^{\infty} e^{-t} t^{s-1 / 2} \frac{d t}{t}=\sqrt{\pi} \Gamma(s-1 / 2)
$$

Otherwise, it is equal to

$$
\begin{aligned}
e^{-t} \int_{\mathbb{R}} e^{i a u} e^{-t u^{2}} d u & =2 \pi e^{-t} \int_{\mathbb{R}} e^{-4 \pi^{2} u^{2} t} e^{-2 \pi i a u} d u \\
& =2 \pi e^{-t}\left(\frac{1}{2 \sqrt{\pi t}} e^{-\frac{\pi a^{2}}{4 \pi t}}\right)=\sqrt{\pi} \frac{e^{-t}}{\sqrt{t}} e^{-a^{2} /(4 t)} \\
& \left.=\sqrt{\frac{\pi}{t}} e^{-\frac{|a|}{2}\left(\left.\frac{|a|}{2} t+\frac{1}{\left|\frac{1}{2}\right|} \right\rvert\,\right.}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\Gamma(s) I_{s}(a) & =\sqrt{\pi} \mathcal{M}\left(t \mapsto e^{-\frac{|a|}{2}\left(\frac{|a|}{2} t+\frac{1}{\frac{|a|}{2} t}\right)}\right)(s-1 / 2) \\
& =\sqrt{\pi}\left(\frac{|a|}{2}\right)^{s-1 / 2} \mathcal{M}\left(e^{-\frac{|a|}{2}\left(t+\frac{1}{t}\right)}\right)(s-1 / 2) \\
& =\sqrt{\pi}\left(\frac{|a|}{2}\right)^{s-1 / 2} K_{s-1 / 2}(|a|) .
\end{aligned}
$$

Let $s \in\langle 1, \infty\rangle$ and consider the Fourier expansion $E^{*}(z, s)=\sum_{n \in \mathbb{Z}} a_{n}(y, s) e^{2 \pi i n x}$ with coefficients

$$
\begin{aligned}
a_{0}(y, s) & =2 \Lambda(2 s) y^{s}+2 \Lambda(2 s-1) y^{1-s} \\
a_{n}(y, s) & =4 \sqrt{y}|n|^{s-1 / 2} \sigma_{1-2 s}(|n|) K_{s-1 / 2}(2 \pi|n| y)
\end{aligned}
$$

where $\Lambda(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)$.
b) Prove that each coefficient $a_{n}(y, s), n \neq 0$, has an analytical continuation to an entire function and satisfies the functional equation

$$
a_{n}(y, s)=a_{n}(y, 1-s) .
$$

Proof: Each $a_{n}(y, s), n \neq 0$, is entire, since $K_{s}(y)$ and $\sigma_{s}(|n|)$ are entire. To show the functional equation, we first compute

$$
\begin{aligned}
|n|^{1 / 2-s} \sigma_{2 s-1}(|n|) & =|n|^{1 / 2-s} \sum_{d| | n \mid} d^{2 s-1} \\
& =|n|^{s-1 / 2} \sum_{d| | n \mid} \frac{d^{2 s-1}}{|n|^{1-2 s}} \\
& =|n|^{s-1 / 2} \sum_{d| | n \mid} d^{1-2 s}=|n|^{s-1 / 2} \sigma_{1-2 s}(|n|) .
\end{aligned}
$$

Then

$$
\begin{aligned}
a_{n}(y, s) & \stackrel{\text { def }}{=} 4 \sqrt{y}\left(|n|^{s-1 / 2} \sigma_{1-2 s}(|n|)\right) K_{s-1 / 2}(2 \pi|n| y) \\
& =4 \sqrt{y}\left(|n|^{1 / 2-s} \sigma_{2 s-1}(|n|)\right) K_{1 / 2-s}(2 \pi|n| y)=a_{n}(y, 1-s)
\end{aligned}
$$

c) Show that $\Lambda(s)$ has a meromorphic continuation to the whole complex plane with simple poles at $s=0,1$ with residues ∓ 1, and that it satisfies the functional equation

$$
\Lambda(s)=\Lambda(1-s)
$$

Proof: It follows from exercises 3 b and 1 c that the constant term $a_{0}(y, s)$ has a meromorphic continuation to the whole complex plane, with poles at $s=0,1$, residues ∓ 1 and functional equation $a_{0}(y, s)=a_{0}(y, 1-s)$.
If we observe that

$$
a_{0}\left(y, \frac{s}{2}\right) \frac{y^{s / 2-1}}{2}=\Lambda(s) y^{s-1}+\Lambda(s-1)
$$

we can express $\Lambda(s)$ as

$$
\Lambda(s)=\Lambda(s)\left(\frac{y_{1}^{s-1}-y_{2}^{s-1}}{y_{1}^{s-1}-y_{2}^{s-1}}\right)=\frac{1}{2} \frac{a_{0}\left(y_{1}, s / 2\right) y_{1}^{s / 2-1}-a_{0}\left(y_{2}, s / 2\right) y_{2}^{s / 2-1}}{y_{1}^{s-1}-y_{2}^{s-1}}
$$

where $y_{1}, y_{2} \in \mathbb{R}_{>0}$ are distinct. Now $\Lambda(s)$ has a meromorphic continuation, and is analytic outside of $s=0,1,2$. Moreover, from the functional equation for a_{0}, one has

$$
\Lambda(s) y^{s / 2}+\Lambda(s-1) y^{1-s / 2}=\Lambda(2-s) y^{1-s / 2}+\Lambda(1-s) y^{s}
$$

or equivalently,

$$
\Lambda(s)-\Lambda(1-s)=(\Lambda(2-s)-\Lambda(s-1)) y^{1-s}
$$

The latter equality can only be true if $\Lambda(s)=\Lambda(1-s)$.
To compute the residue at $s=0$, we choose $y_{1}=y$ and $y_{2}=-y$,

$$
\operatorname{Res}_{s=0} \Lambda(s)=\frac{y}{4}\left(\frac{-4}{y}\right)=-1
$$

It follows from then functional equation that the residue at $s=1$ is then $=+1$. Finally, choosing for $\Lambda(s) y_{1}=y_{2}=y$, we note that $s=2$ is a removable singularity.
4. a) Let $w \in \mathbb{C}$. Show that:

$$
\mathcal{M}\left(K_{w}(y)\right)(s)=2^{s-2} \Gamma\left(\frac{s+w}{2}\right) \Gamma\left(\frac{s-w}{2}\right)
$$

Proof:

$$
\begin{aligned}
2^{s-2} \Gamma\left(\frac{s+w}{2}\right) \Gamma\left(\frac{s-w}{2}\right) & =2^{s-2} \int_{0}^{\infty} \int_{0}^{\infty} e^{-(y+z)} y^{\frac{s+w}{2}} z^{\frac{s-w}{2}} \frac{d y}{y} \frac{d z}{z} \\
\left(\text { setting } y=t^{2} z, \frac{d y}{y}=2 \frac{d t}{t}\right) & =2^{s} \frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(t^{2} z+z\right)} t^{s+w} z^{s} \frac{d t}{t} \frac{d z}{z} \\
& =\frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} e^{-\frac{2 t z}{2}\left(t+\frac{1}{t}\right)}(2 t z)^{s} t^{w} \frac{d t}{t} \frac{d z}{z} \\
\left(\text { setting } y=2 t z, \frac{d z}{z}=\frac{d y}{y}\right) & =\int_{0}^{\infty}\left(\frac{1}{2} \int_{0}^{\infty} e^{-\frac{y}{2}\left(t+\frac{1}{t}\right)} t^{w} \frac{d t}{t}\right) y^{s} \frac{d y}{y} \\
& =\int_{0}^{\infty} K_{w}(y) y^{s} \frac{d y}{y}=\mathcal{M}\left(K_{w}(y)\right)(s)
\end{aligned}
$$

b) Use task $3 b, c)$ and $4 a$) to show that:
$\left.\Lambda\left(E^{*}(\cdot, w), s\right):=\mathcal{M}\left(E^{*}(i y, w)\right)-a_{0}(y, w)\right)(s)=2 \Lambda(s+w) \Lambda(s+1-w)=2 \Lambda(w+s) \Lambda(w-s)$
Hint: Show and use the following fact:

$$
\sum_{n=1}^{\infty} \sigma_{w}(n) n^{-s}=\zeta(s) \zeta(s-w)
$$

Proof:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \sigma_{w}(n) n^{-s} & =\sum_{n=1}^{\infty} \sum_{d \mid n} d^{w} n^{-s}=\sum_{n=1}^{\infty} \sum_{\substack{a, b \in \mathbb{Z}_{>0} \\
a b=n}} a^{w}(a b)^{-s}=\sum_{a, b \in \mathbb{Z}_{>0}} a^{-(s-w)} b^{-s} \\
& =\sum_{a=1}^{\infty} a^{-s(s-w)} \sum_{b=1}^{\infty} b^{-s}=\zeta(s) \zeta(s-w)
\end{aligned}
$$

First note that

$$
E^{*}(i y, w)-a_{0}(y, w)=\sum_{n \neq 0} a_{n}(y, w)=8 y^{\frac{1}{2}} \sum_{n=1}^{\infty} n^{w-\frac{1}{2}} \sigma_{1-2 w}(n) K_{w-\frac{1}{2}}(2 \pi n y)
$$

Since the Mellin transformation is linear we only need to compute

$$
\begin{aligned}
\mathcal{M}\left(y^{\frac{1}{2}} K_{w-\frac{1}{2}}(2 \pi n y)\right)(s) & =\mathcal{M}\left(K_{w-\frac{1}{2}}(2 \pi n y)\right)\left(s+\frac{1}{2}\right) \\
& =(2 \pi n)^{-\left(s+\frac{1}{2}\right)} \mathcal{M}\left(K_{w-\frac{1}{2}}(y)\right)\left(s+\frac{1}{2}\right) \\
& =(2 \pi n)^{-\left(s+\frac{1}{2}\right)}\left(2^{s-2+\frac{1}{2}} \Gamma\left(\frac{s+\frac{1}{2}+w-\frac{1}{2}}{2}\right) \Gamma\left(\frac{s+\frac{1}{2}-w+\frac{1}{2}}{2}\right)\right) \\
& =\frac{1}{4} \pi^{-\left(s+\frac{1}{2}\right)} n^{-\left(s+\frac{1}{2}\right)} \Gamma\left(\frac{s+w}{2}\right) \Gamma\left(\frac{s+1-w}{2}\right)
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\Lambda\left(E^{*}(\cdot, w), s\right) & =\mathcal{M}\left(E^{*}(i y, w)-a_{0}(y, w)\right)(s)=8 \sum_{n=1}^{\infty} n^{w-\frac{1}{2}} \sigma_{1-2 w}(n) \mathcal{M}\left(y^{\frac{1}{2}} K_{w-\frac{1}{2}}(2 \pi n y)\right)(s) \\
& =8 \sum_{n=1}^{\infty} n^{w-\frac{1}{2}} \sigma_{1-2 w}(n)\left(\frac{1}{4} \pi^{-\left(s+\frac{1}{2}\right)} n^{-\left(s+\frac{1}{2}\right)} \Gamma\left(\frac{s+w}{2}\right) \Gamma\left(\frac{s+1-w}{2}\right)\right) \\
& =2 \pi^{-\left(s+\frac{1}{2}\right)} \Gamma\left(\frac{s+w}{2}\right) \Gamma\left(\frac{s+1-w}{2}\right) \sum_{n=1}^{\infty} \sigma_{1-2 w}(n) n^{-(s+1-w)} \\
& =2 \pi^{-\left(s+\frac{1}{2}\right)} \Gamma\left(\frac{s+w}{2}\right) \Gamma\left(\frac{s+1-w}{2}\right) \zeta(s+1-w-1+2 w) \zeta(s+1-w) \\
& =2\left(\pi^{-\frac{s+w}{2}} \Gamma\left(\frac{s+w}{2}\right) \zeta(s+w)\right)\left(\pi^{-\frac{s+1-w}{2}} \Gamma\left(\frac{s+1-w}{2}\right) \zeta(s+1-w)\right) \\
& =2 \Lambda(s+w) \Lambda(s+1-w)=2 \Lambda(w+s) \Lambda(w-s)
\end{aligned}
$$

