
D-MATH Modular Forms HS 15
Prof. Özlem Imamoglu

Solutions 7

1. Let z ∈ H and consider the Θ-function defined by

Θz(t) =
∑
m,n∈Z

e
−πt |mz+n|

2

y

for all t > 0.

a) Show that Θz satisfies the functional equation Θz(t) = 1
tΘz

(
1
t

)
.

Proof:

Θz(t)
def
=

∑
m,n∈Z

e
−π t

y ((mx+n)2+(my)2)

=
∑
m∈Z

e
−π t

y
(my)2

∑
n∈Z

e
−π t

y
(mx+n)2

(∗)
=

∑
m∈Z

e
−π t

y
(my)2

∑
n∈Z

e2πimxn

√
y

t
e−π

y
t
n2

=

√
y

t

∑
m,n∈Z

e−πtym
2
e2πimxne−π

y
t
n2

=

√
y

t

∑
n∈Z

e
−π
(
x2+y2

ty

)
n2 ∑

m∈Z
e
−πty

(
m+ inx

ty

)2

(∗)
=

√
y

t

∑
n∈Z

e
−π
(
x2+y2

ty

)
n2 ∑

m∈Z

1√
ty
e
−πm

2

ty e
− π
ty

(2mnx)

=
1

t

∑
m,n∈Z

e
− π
ty (n2(x2+y2)+m2+2mnx) def

=
1

t
Θz

(
1

t

)

where (∗) indicates that we applied the Poisson summation formula.

For all s ∈ 〈1,∞〉, let

E(z, s) =
∑

γ∈Γ∞\Γ

Im(γz)s =
∑
c,d∈Z

(c,d)=1

ys

|cz + d|2s
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and
E∗(z, s) = π−sΓ(s)2ζ(2s)E(z, s) = π−sΓ(s)

∑
m,n∈Z

(m,n)6=(0,0)

ys

|mz + n|2s
.

b) Check that E(γz, s) = E(z, s) for all γ ∈ Γ and show that

E∗(z, s) =

∫ ∞
0

(Θz(t)− 1) ts
dt

t
.

Solution: Let γ′ ∈ Γ, then the collection of elements γγ′ where γ runs through a sy-
stem of coset representatives for Γ∞\Γ is also a system of coset representatives for that
quotient, hence E(γ′z, s) = E(z, s) and this holds for all γ′ ∈ Γ.

Observe that
Θz(t)− 1 =

∑
m,n∈Z

(m,n) 6=(0,0)

e
−π t

y
|mz+n|2

and∫
R>0

(Θz(t)− 1) ts
dt

t
=

∑
m,n∈Z

(m,n)6=(0,0)

M
(
t 7→ e

−π t
y
|mz+n|2

)
(s)

(∗∗)
= M(t 7→ e−t)(s)

∑
m,n∈Z

(m,n)6=(0,0)

(
π|mz + n|2

y

)−s
= E∗(z, s)

where in (∗∗) we applied the second transformation property of Mellin transforms that
we proved in exercise 2b of problem set 5.

c) Show that E∗(z, s) has a meromorphic continuation to the whole complex s-plane with
single poles at s = 0 and s = 1 with residues -1 and 1 respectively. Finally, prove the
functional equation E∗(z, 1− s) = E∗(z, s).

Solution : We decompose the integral representation of E∗(z, s) into the sum of the two
integrals

E∗(z, s) =

∫ 1

0
(Θz(t)− 1) ts

dt

t
+

∫ ∞
1

(Θz(t)− 1) ts
dt

t
.

Observe that the first integral is analytic for s ∈ 〈1,∞〉 while the second integral is entire
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in that fundamental strip. For the first integral, we have∫ 1

0
(Θz(t)− 1) ts

dt

t
=

∫ ∞
1

(
Θz

(
1

t

)
− 1

)
t−s

dt

t

a)
=

∫ ∞
1

(
Θz(t)−

1

t

)
t1−s

dt

t

=

∫ ∞
1

(Θz(t)− 1) t1−s
dt

t
+

∫ ∞
1

(
1− 1

t

)
t1−s

dt

t

=

∫ ∞
1

(Θz(t)− 1) t1−s
dt

t
+

1

s(1− s)
.

Again, the first integral is entire in s and it follows that E∗(z, s) has a meromorphic
continuation with poles at s = 0, 1 and E∗(z, 1− s) = E∗(z, s).

2. Let ϕ : H → C be an analytic function such that ϕ(γz) = ϕ(z) for all γ ∈ Γ and ϕ(z) =
O
(
y−C

)
as y → ∞ for all C > 0. Such a function has a Fourier expansion of the form

ϕ(z) =
∑

n∈Z ϕn(y)e2πinx where ϕn(y) =
∫ 1

0 ϕ(x+ iy)e−2πinxdx. Set

Λϕ(s) = π−sΓ(s)2ζ(2s)M(ϕ0)(s− 1)

for all s ∈ 〈1,∞〉.

a) Show thatM(ϕ0)(s) is indeed well-defined on the fundamental strip 〈0,∞〉 and that it
is bounded in every vertical strip strictly contained in 〈0,∞〉.

Proof: First of all, we show that a Γ-invariant function ϕ that decays rapidly in the cusp
as described above, is a bounded function. By invariance, ϕ can be seen as a function on
the closure F of the standard fundamental domain for Γ. Now,

F =
(
F ∩ {y ≤ C}

)
∪
(
F ∩ {y > C}

)
.

For any positive constant C, the first component defines a compact region on which ϕ is
then necessarily bounded. We can choose C sufficiently large so that ϕ, which is rapidly
decaying as y →∞, is also bounded on the second component.

Then ϕ0(y) =
∫ 1

0 ϕ(x+ iy)e−2πinxdx is also bounded and rapidly decaying in the cusp.

Let s ∈ 〈a, b〉, a vertical strip strictly contained in the fundamental strip 〈0,∞〉. Then

|M(ϕ0)(s)| ≤
∫ 1

0
|ϕ0(y)|yady

y
+

∫ M

1
|ϕ0(y)|ybdy

y
+

∫ ∞
M
|ϕ0(y)|ybdy

y
< ∞

where we chose M such that |ϕ0(y)| � y−b−1 whenever y ≥M .
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b) Check that Λϕ has the following integral representation

Λϕ(s) = 〈ϕ,E∗(·, s)〉 =

∫
F
ϕ(z)E∗(z, s)dµ(z)

where F denotes a fundamental domain for Γ.

Solution: Note that it suffices to show thatM(ϕ0)(s− 1) = 〈ϕ,E(·, s)〉. And indeed,

M(ϕ0)(s−1)
def
=

∫ ∞
0

ϕ0(y)ys
dy

y2

def
=

∫ ∞
0

∫ 1

0
ϕ(x+iy)dx ys

dy

y2
=

∫
F∞

ϕ(z)ysdµ(z),

where F∞ = {z ∈ H : x ∈ [0, 1]}. One can choose a collection of representatives (αj)
such that F∞ =

⋃
α∈Γ∞\Γ α

−1F . Then∫
F∞

ϕ(z)ysdµ(z) =
∑

α∈Γ∞\Γ

∫
α−1F

ϕ(z)ysdµ(z)

=
∑

α∈Γ∞\Γ

∫
F
ϕ(z) Im(αz)sdµ(z) =

∫
F
ϕ(z)E(z, s)dµ(z).

c) Prove that Λϕ has a meromorphic continuation to the whole complex plane with simple
poles at s = 0 and s = 1 with residues ∓

∫
F ϕ(z)dµ(z). It is bounded in any vertical

strip (that does not contain a pole) and satisfies the functional equation

Λϕ(s) = Λϕ(1− s).

N.B. This is the simplest case of the Rankin–Selberg method.

Proof: By the assumptions on ϕ and ex 1c), Λϕ is analytic for s 6= 0, 1, where it ad-
mits simple poles, coming from the simple poles of E∗(z, s). We can conclude that it is
moreover bounded on vertical strips from part a) of this exercise. Finally,

Res
s=1

(Λϕ) =

∫
F

Res
s=1

E∗(z, s)ϕ(z)dµ(z) =

∫
F
ϕ(z)dµ(z),

and by the functional equation from 1c) Res(Λϕ)(1) = −Res(Λϕ)(0).

Let f =
∑
anq

n ∈ Sk(Γ) and g =
∑
bnq

n ∈Mk(Γ) and set φ = fgyk. We define

L(f × g, s) = 2ζ(2s− 2k + 2)
∑
n≥1

anbnn
−s,

Λ(f × g, s) = πk−1(2π)−2sΓ(s)Γ(s− k + 1)L(f × g, s).

For simplicity, we will assume that bn = bn for all n.

The L-series L(f × g, s) is called the Rankin–Selberg convolution of f and g.
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d) Check that φ satisfies the same properties as the function ϕ at the beginning of the exer-
cise. Show that for all s ∈ 〈0,∞〉

M(φ0)(s) = (4π)−(s+k)Γ(s+ k)
∑
n≥1

anbnn
−(s+k).

Solution: Clearly ϕ is analytic. Since f is a cusp form, f(z) = O(y−C) as y → ∞ for
any C > 0. In particular, let f(z) = O(y−C−k) also holds. The function g is a modular
form and therefore g(z) = O(1), hence φ(z) = O(y−C) as y →∞. Finally,

φ(γz) =
j(γ, z)kj(γ, z)k

|j(γ, z)|2k
φ(z) = φ(z)

for all γ ∈ Γ and z ∈ H.

We compute

φ0(y)
def
=

∫ 1

0
φ(x+iy)dy =

∑
m≥1

∑
n≥0

ambny
ke−2π(m+n)

∫ 1

0
e2πi(m−n)xdx =

∑
n≥1

anbny
ke−4πny.

By Hecke’s estimate, |an| = O(n
k
2 ) and |bn| = O(nk). Hence

M(φ0)(s) =
∑
n≥1

anbn

∫
R>0

e−4πnyys+k
dy

y

=
∑
n≥1

anbn

(
(4πn)−(s+k)Γ(s+ k)

)
= (4π)−(s+k)Γ(s+ k)

∑
n≥1

anbn
ns+k

.

for all s ∈ 〈k/2 + 2,∞〉. We finally show that this actually holds on the strip 〈0,∞〉.
We assume that the sum doesn’t converge absolutely anymore for Re(s) ≤ σ and choose
σ maximally. By contradiction we assume that σ > 0. Note that the equality still holds
for s ∈< σ+ 1

N ,∞ > for allN > 0. Also note that Im(s) doesn’t matter for the absolute
convergence. Since the sum doesn’t converge absolutely for Re(s) ≤ σ we can (wlog)
assume that the following series diverges as N →∞:

SN :=
∑
n≥1

anbnn
−(σ+ 1

N
+k)

But on the other hand we have:

SN = (4π)σ+ 1
N

+kΓ

(
σ +

1

N
+ k

)
M(φ0(y))(σ +

1

N
)

Which converges forN →∞ to (4π)σ+kΓ(σ+k)M(φ0(y))(σ) ∈ C (as shown before).
This gives a contradiction. Hence the formula holds for s ∈< 0,∞ >.
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e) Prove that Λ(f × g, s) has a meromorphic continuation to the whole complex plane with
simple poles at s = k and s = k − 1 with residues ±〈f, g〉. It is bounded in any vertical
strip (that does not contain a pole) and satisfies the functional equation

Λ(f × g, s) = Λ(f × g, 2k − 1− s).

Hint: Show first that Λφ(s) = Λ(f × g, s+ k − 1).

Proof: By the definitions,

Λ(f × g, s+ k − 1) =
πk−1

4s+k−1
2ζ(2s)Γ(s)Γ(s+ k − 1)

∑
n≥1

anbn
ns+k−1

and

Λφ(s)
def
= π−sΓ(s)2ζ(2s)M(φ0)(s− 1)

2d
=

π−s

(4π)s+k−1

4s+k−1

πk−1
Λ(f × g, s+ k − 1) = Λ(f × g, s+ k − 1)

for all s ∈ 〈1,∞〉. Now we can derive the statement from the meromorphic continuation
of Λφ and its properties established in exercise 2c.

3. The MacDonald–Bessel function is given by

Ks(y) =
1

2

∫ ∞
0

e−
y
2 (t+ 1

t )ts
dt

t

for all y > 0, s ∈ C. It is entire as a function in s and decays rapidly as y → ∞. Moreover,
one can show by a change of variable that Ks(y) = K−s(y).

a) Set

Is(a) =

∫
R

eiau

(u2 + 1)s
du

for all a ∈ R, s ∈ 〈1/2,∞〉. Prove that

Γ(s)Is(a) =

{√
π Γ(s− 1/2) a = 0

2
√
π
∣∣a

2

∣∣s−1/2
Ks−1/2(|a|) a 6= 0.

Proof:

Γ(s)Is(a) =

∫ ∞
0

∫ ∞
−∞

e−tts−1 eiau

(u2 + 1)s
dudt

=

∫ ∞
0

∫ ∞
−∞

e−(u2+1)tts−1eiaududt

=

∫ ∞
0

(∫ ∞
−∞

e−(u2+1)teiaudu

)
ts
dt

t
.
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If a = 0, then the inner integral is equal to
√
π e−tt−1/2, and

Γ(s)Is(0) =
√
π

∫ ∞
0

e−tts−1/2dt

t
=
√
π Γ(s− 1/2).

Otherwise, it is equal to

e−t
∫
R

eiaue−tu
2
du = 2πe−t

∫
R

e−4π2u2te−2πiaudu

= 2πe−t
(

1

2
√
πt
e−

πa2

4πt

)
=
√
π
e−t√
t
e−a

2/(4t)

=

√
π

t
e
− |a|

2

(
|a|
2
t+ 1
|a|
2 t

)
.

Hence

Γ(s)Is(a) =
√
πM

t 7→ e
− |a|

2

(
|a|
2
t+ 1
|a|
2 t

) (s− 1/2)

=
√
π

(
|a|
2

)s−1/2

M
(
e−
|a|
2 (t+ 1

t )
)

(s− 1/2)

=
√
π

(
|a|
2

)s−1/2

Ks−1/2(|a|).

Let s ∈ 〈1,∞〉 and consider the Fourier expansion E∗(z, s) =
∑

n∈Z an(y, s)e2πinx with
coefficients

a0(y, s) = 2Λ(2s)ys + 2Λ(2s− 1)y1−s

an(y, s) = 4
√
y |n|s−1/2σ1−2s(|n|)Ks−1/2(2π|n|y)

where Λ(s) = π−s/2Γ(s/2)ζ(s).

b) Prove that each coefficient an(y, s), n 6= 0, has an analytical continuation to an entire
function and satisfies the functional equation

an(y, s) = an(y, 1− s).

Proof: Each an(y, s), n 6= 0, is entire, since Ks(y) and σs(|n|) are entire. To show the
functional equation, we first compute

|n|1/2−sσ2s−1(|n|) = |n|1/2−s
∑
d||n|

d2s−1

= |n|s−1/2
∑
d||n|

d2s−1

|n|1−2s

= |n|s−1/2
∑
d||n|

d1−2s = |n|s−1/2σ1−2s(|n|).
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Then

an(y, s)
def
= 4

√
y
(
|n|s−1/2σ1−2s(|n|)

)
Ks−1/2(2π|n|y)

= 4
√
y
(
|n|1/2−sσ2s−1(|n|)

)
K1/2−s(2π|n|y) = an(y, 1− s).

c) Show that Λ(s) has a meromorphic continuation to the whole complex plane with simple
poles at s = 0, 1 with residues ∓1, and that it satisfies the functional equation

Λ(s) = Λ(1− s).

Proof: It follows from exercises 3b and 1c that the constant term a0(y, s) has a meromor-
phic continuation to the whole complex plane, with poles at s = 0, 1, residues ∓1 and
functional equation a0(y, s) = a0(y, 1− s).

If we observe that

a0

(
y,
s

2

) ys/2−1

2
= Λ(s)ys−1 + Λ(s− 1),

we can express Λ(s) as

Λ(s) = Λ(s)

(
ys−1

1 − ys−1
2

ys−1
1 − ys−1

2

)
=

1

2

a0(y1, s/2)y
s/2−1
1 − a0(y2, s/2)y

s/2−1
2

ys−1
1 − ys−1

2

where y1, y2 ∈ R>0 are distinct. Now Λ(s) has a meromorphic continuation, and is
analytic outside of s = 0, 1, 2. Moreover, from the functional equation for a0, one has

Λ(s)ys/2 + Λ(s− 1)y1−s/2 = Λ(2− s)y1−s/2 + Λ(1− s)ys

or equivalently,

Λ(s)− Λ(1− s) = (Λ(2− s)− Λ(s− 1)) y1−s.

The latter equality can only be true if Λ(s) = Λ(1− s).

To compute the residue at s = 0, we choose y1 = y and y2 = −y,

Res
s=0

Λ(s) =
y

4

(
−4

y

)
= −1.

It follows from then functional equation that the residue at s = 1 is then = +1. Finally,
choosing for Λ(s) y1 = y2 = y, we note that s = 2 is a removable singularity.
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4. a) Let w ∈ C. Show that:

M (Kw(y)) (s) = 2s−2Γ

(
s+ w

2

)
Γ

(
s− w

2

)

Proof:

2s−2Γ

(
s+ w

2

)
Γ

(
s− w

2

)
= 2s−2

∫ ∞
0

∫ ∞
0

e−(y+z)y
s+w
2 z

s−w
2
dy

y

dz

z(
setting y = t2z,

dy

y
= 2

dt

t

)
= 2s

1

2

∫ ∞
0

∫ ∞
0

e−(t2z+z)ts+wzs
dt

t

dz

z

=
1

2

∫ ∞
0

∫ ∞
0

e−
2tz
2 (t+ 1

t )(2tz)stw
dt

t

dz

z(
setting y = 2tz,

dz

z
=
dy

y

)
=

∫ ∞
0

(
1

2

∫ ∞
0

e−
y
2 (t+ 1

t )tw
dt

t

)
ys
dy

y

=

∫ ∞
0

Kw(y)ys
dy

y
=M (Kw(y)) (s)

b) Use task 3b, c) and 4a) to show that:

Λ(E∗(·, w), s) :=M (E∗(iy, w))− a0(y, w)) (s) = 2Λ(s+ w)Λ(s+ 1− w) = 2Λ(w + s)Λ(w − s)

Hint: Show and use the following fact:

∞∑
n=1

σw(n)n−s = ζ(s)ζ(s− w)

Proof:
∞∑
n=1

σw(n)n−s =
∞∑
n=1

∑
d|n

dwn−s =
∞∑
n=1

∑
a,b∈Z>0
ab=n

aw(ab)−s =
∑

a,b∈Z>0

a−(s−w)b−s

=

∞∑
a=1

a−s(s−w)
∞∑
b=1

b−s = ζ(s)ζ(s− w)

First note that

E∗(iy, w)− a0(y, w) =
∑
n 6=0

an(y, w) = 8y
1
2

∞∑
n=1

nw−
1
2σ1−2w(n)Kw− 1

2
(2πny)

9



Since the Mellin transformation is linear we only need to compute

M
(
y

1
2Kw− 1

2
(2πny)

)
(s) =M

(
Kw− 1

2
(2πny)

)(
s+

1

2

)
= (2πn)−(s+ 1

2)M
(
Kw− 1

2
(y)
)(

s+
1

2

)
= (2πn)−(s+ 1

2)

(
2s−2+ 1

2 Γ

(
s+ 1

2 + w − 1
2

2

)
Γ

(
s+ 1

2 − w + 1
2

2

))

=
1

4
π−(s+ 1

2)n−(s+ 1
2)Γ

(
s+ w

2

)
Γ

(
s+ 1− w

2

)
Finally,

Λ(E∗(·, w), s) =M (E∗(iy, w)− a0(y, w)) (s) = 8

∞∑
n=1

nw−
1
2σ1−2w(n)M

(
y

1
2Kw− 1

2
(2πny)

)
(s)

= 8
∞∑
n=1

nw−
1
2σ1−2w(n)

(
1

4
π−(s+ 1

2)n−(s+ 1
2)Γ

(
s+ w

2

)
Γ

(
s+ 1− w

2

))

= 2π−(s+ 1
2)Γ

(
s+ w

2

)
Γ

(
s+ 1− w

2

) ∞∑
n=1

σ1−2w(n)n−(s+1−w)

= 2π−(s+ 1
2)Γ

(
s+ w

2

)
Γ

(
s+ 1− w

2

)
ζ(s+ 1− w − 1 + 2w)ζ(s+ 1− w)

= 2

(
π−

s+w
2 Γ

(
s+ w

2

)
ζ(s+ w)

)(
π−

s+1−w
2 Γ

(
s+ 1− w

2

)
ζ(s+ 1− w)

)
= 2Λ(s+ w)Λ(s+ 1− w) = 2Λ(w + s)Λ(w − s)
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