ETH Zürich HS 2015 Prof. Dr. P. Embrechts

Wahrscheinlichkeit und Statistik

Lösungen Serie 12

Lösung 12-1. Modell: Unter P_{λ} sind die X_i , i.i.d., $\sim \text{Pois}(\lambda)$, i = 1, ..., 6, λ unbekannt.

Nullhypothese H_0 : $\lambda = \lambda_0 = 0.5$.

Alternativhypothese H_A : $\lambda = \lambda_A > \lambda_0$. Teststatistik: $T = \sum_{i=1}^{6} X_i$, denn

$$R(x_1, \dots, x_6; \lambda_0, \lambda_A) = \frac{L(x_1, \dots, x_6; \lambda_0)}{L(x_1, \dots, x_6; \lambda_A)} = \frac{e^{-6\lambda_0} \prod_{i=1}^6 \frac{\lambda_0^{x_i}}{x_i!}}{e^{-6\lambda_A} \prod_{i=1}^6 \frac{\lambda_A^{x_i}}{x_i!}}$$

$$= e^{-6(\lambda_0 - \lambda_A)} \left(\frac{\lambda_0}{\lambda_A}\right)^{\sum_{i=1}^6 x_i}$$

$$= \text{const.}(\lambda_0, \lambda_A) \left(\frac{\lambda_0}{\lambda_A}\right)^{\sum_{i=1}^6 x_i}.$$

Da $\lambda_0 < \lambda_A$ wird $R(x_1, \dots, x_6; \lambda_0, \lambda_A)$ klein, genau dann, wenn $\sum_{i=1}^6 x_i$ gross ist. Statt des komplizierten Quotienten wählen wir als Teststatistik also

$$T = \sum_{i=1}^{6} X_i.$$

Verteilung der Teststatistik unter H_0 : $T \sim Pois(6\lambda_0) = Pois(3)$.

Verwerfungsbereich: Der kritische Bereich "Quotient klein" hat die äquivalente Form "Summe gross", also ist der Verwerfungsbereich von der Form $K=(k,\infty)$. Um das Signifikanzniveau einzuhalten, muss gelten

$$P_{\lambda_0}[T \in K] = P_{\lambda_0}[T > k] \le 2.5\% \Leftrightarrow P_{\lambda_0}[T \le k] \ge 97.5\%.$$

k	$P_{\lambda_0}[T=k]$	$P_{\lambda_0}[T \le k]$
0	0.050	0.050
1	0.149	0.199
2	0.224	0.423
3	0.224	0.647
4	0.168	0.815
5	0.101	0.916
6	0.050	0.966
7	0.022	0.988

Deshalb haben wir als Verwerfungsbereich= $(7, \infty)$.

Beobachteter Wert der Teststatistik: $t = T(\omega) = 6$.

Testentscheid: Da 6 nicht im Verwerfungsbereich liegt, wird die Nullhypothese nicht ver-

(a) Modell: Unter P_{θ} sind X_1, \ldots, X_6 iid $\sim \mathcal{N}(\mu, \sigma)$ mit μ und σ unbekannt Lösung 12-2. (also t-Test).

Nullhypothese H_0 : $\mu = 5.8$

Alternativhypothese H_A : $\mu \neq 5.8$.

Teststatistik: $T:=\frac{\bar{X}_6-5.8}{S_6/\sqrt{6}}$

Wahrscheinlichkeit und Statistik

Verteilung der Teststatistik unter H_0 : T ist unter H_0 t-verteilt mit 5 Freiheitsgraden.

Verwerfungsbereich: Auf dem 1%-Niveau wird die Nullhypothese genau dann verworfen, wenn |T| > 4.032.

Beobachteter Wert der Teststatistik: Aus den Daten ergibt sich $\bar{x}_6 = 5.602$ und $s_6 = 0.2288$, also |t| = 2.12.

Testentscheid: Da $|t| \le 4.032$ wird H_0 nicht verworfen.

- (b) Alles wie oben, aber $\bar{x}_6 = 5.685$ und $s_6 = 0.0606$, also |t| = 4.648, d.h. H_0 wird verworfen. Obwohl der Mittelwert noch näher an 5.8 liegt als vorher, kann H_0 jetzt verworfen werden, weil s_6 jetzt viel kleiner ist.
- **Lösung 12-3.** (a) Seien X_1, \ldots, X_{10} die gemessenen Temperaturen mit arithmetischem Mittel \bar{X}_{10} . **Modellannahmen:** X_1, \ldots, X_{10} sind unter P_{θ} unabhängig und normalverteilt mit unbekanntem Erwartungswert μ und Standardabweichung $\sigma = 0.5$ (also z-Test).

Nullhypothese H_0 : $\mu = 20$.

Alternativhypothese H_A : $\mu \neq 20$.

Teststatistik T:

$$T = \frac{\bar{X}_{10} - 20}{0.5/\sqrt{10}}$$

Verteilung der Teststatistik unter Annahme von H_0 : Falls H_0 gilt, ist T standard-normalverteilt.

Verwerfungsbereich: H_0 wird verworfen, falls |T| > 1.96 ist, da unter H_0 gilt: $P_{H_0}[|T| > 1.96] \approx 0.05$.

Beobachteter Wert der Teststatistik: Wegen $\bar{x}_{10} = 20.543$ ist hier t = 3.43, was eindeutig im Verwerfungsbereich liegt.

Testentscheid: H_0 wird verworfen.

(b) Zu berechnen ist $P_{H_0}[|T| > 3.43] = 2P_{H_0}[T > 3.43] = 2(1 - \Phi(3.43)) \approx 0.0006$.

Lösung Challenge Serie 12. Wenn zwei Ameisen miteinander kollidieren, dann können wir (via Symmetrie) annehmen, dass eigentlich keine Kollision stattgefunden hat, d.h. als wir können so tun als ob beide einfach in die gleiche Richtung weiter laufen würden.

Nach dieser Uberlegung ist die erwartete Zeit gleich $E[\max\{X_1,\ldots,X_{500}\}]$, was mit Hilfe von Serie 9 Aufgabe 1 gleich ist mit $\frac{500}{501}$ Minuten.