Seminar Darstellungstheorie von Köchern ETH Zürich

Köcher mit Relationen

Bledar Fazlija Sabrina Gross Dominic Descombes

In the following *A* denotes a finite dimensional algebra over an algebraic closed field *K*.

Definition 1 An element $a \in A$ is called *idempotent* if $e^2 = e$. The idempotents $e_1, e_2 \in A$ are called *orthogonal* if $e_1e_2 = e_2e_1 = 0$. The idempotent e is called *primitive* if e can't be written as a sum $e = e_1 + e_2$, where e_1 and e_2 are non-zero orthogonal idempotents of A.

A decomposition $A = Ae_1 \oplus ... \oplus Ae_n$ where $e_1, ..., e_n$ are primitive pairwise orthogonal idempotents of A such that $e_1 + ... + e_n = 1$ is called a **indecomposable decomposition** of A and such a set $\{e_1, ..., e_n\}$ **complete set of primitive orthogonal idempotents** of A.

Corollary 1 Let Q be a finite quiver. The element $1 = \sum_{a \in Q_0} \varepsilon_a$ is the identity of KQ and the set $\{\varepsilon_a : a \in Q_0\}$ of all stationary paths is a complete set of primitive orthogonal idempotents for KQ.

Definition 2 Let Q be a finite and connected quiver. The two-sided ideal of the path algebra KQ generated (as an ideal) by the arrows of Q is called the **arrow ideal** of KQ and is denoted by R_Q . Furthermore we define $R_Q^l = \bigoplus_{m \ge l} KQ_m$, where KQ_l is the subspace of KQ generated by the set Q_l of all paths in Q of length $l \ge 1$. So R_Q^l is the ideal of KQ generated (as a k-vector space) by the set of all paths of lengths ≥ 1 .

Now we can define the notion of admissible ideals.

Definition 3 Let Q be a finite quiver and R_Q be the arrow ideal of the path algebra KQ. A two-sided ideal \mathcal{I} of KQ is said to be **admissible** if $\exists m \geq 2$ such that $R_Q^m \subseteq \mathcal{I} \subseteq R_Q^2$. If \mathcal{I} is an admissible ideal of KQ, the pair (Q, \mathcal{I}) is said to be a **bound quiver**. The quotient KQ/\mathcal{I} is said to

be the algebra of the bound quiver (Q, \mathcal{I}) or, simply, a **bound quiver algebra**.

Corollary 2 Let Q be a finite quiver and \mathcal{I} be an admissible ideal of KQ. The set $\{\varepsilon_a + \mathcal{I} : a \in Q_0\}$ is a complete set of primitive orthogonal idempotents of the bound quiver algebra KQ/\mathcal{I} .

Definition 4 Let Q be a quiver. A relation in Q with coefficients in K is a K-linear combination of paths of length at least two having the same source and target, i.e a relation ρ is an element of KQ such that $\rho = \sum_{i=1}^{m} \lambda_i w_i$, where the w_i are paths in Q of length at least 2 such that, if $i \neq j$, then the source (or the target, resp.) of w_i coincides with that of w_j .

Now we formulate our first main theorem:

Theorem 1 Let A = KQ/I, where Q is a finite connected quiver and I is an admissible ideal of KQ. There exists a K-linear equivalence of categories

 $F: ModA \longrightarrow Rep_K(Q, \mathcal{I})$

that restricts to an equivalence of categories $F : modA \longrightarrow rep_K(Q, \mathcal{I})$

Here we want to sketch the proof in some steps:

- Construction of a functor $F : ModA \rightarrow Rep_K(Q, \mathcal{I})$
- Construction of a *K*-linear functor $F : Rep_K(Q, \mathcal{I}) \to ModA$
- It restricts to an equivalence of categories $F : modA \longrightarrow rep_K(Q, \mathcal{I})$

Definition 5 An idempotent element $e \in A$ is called central, if $ea = ae \forall a \in A$.

Corollary 3 The decomposition $A = Ae \oplus A(1 - e)$ for a central idempotent e is not only a left-A module direct sum, but also an algebra direct product; meaning that A equals the product algebra of Ae and A(1 - e) where the multiplication is given point wise. For the category modA we obtain the equivalence $modA \cong modAe \oplus modA(1 - e)$.

Definition 6 *An algebra A is called connected, if A is not a direct product of two algebras, or equivalent, if 0 and 1 are the only central idempotents of A.*

Definition 7 Assume that A is a K-algebra with a complete set $\{e_1, \ldots, e_n\}$ of primitive orthogonal idempotents. The algebra is called basic if $Ae_i \ncong Ae_j$, for all $i \ne j$. A **basic algebra** associated to A is the algebra

$$A^b = e_A A e_A,$$

where $e_A = e_{j_1} + \cdots + e_{j_a}$, and e_{j_1}, \ldots, e_{j_a} are chosen such that $Ae_{j_\alpha} \cong A_{j_\beta}$ for $\alpha \neq \beta$ and each module Ae_{α} is isomorphic to one of the modules $Ae_{j_1}, \ldots, Ae_{j_a}$.

Theorem 2 Let $A^b = e_A A e_A$ be a basic algebra associated to A. The algebra A^b is basic, does not depend on the choice of the sets e_1, \ldots, e_n and e_{j_1}, \ldots, e_{j_a} , up to a K-algebra isomorphism and there is an equivalence of categories $mod A \cong mod A^b$.

Definition 8 The (Jacobson) radical radA of A is the intersection of all the maximal right ideals in A. It is equal to the intersection of all maximal left ideals in A, and so it is a two-sided ideal. rad²A denotes the ideal generated by all elements xy, where $x, y \in radA$.

Lemma 1 $a \in A$ is an element of radA, if and only if for all $b \in A$, 1 - ab and 1 - ba have two-sided inverses. Helpful for the computation of radA is: if I is a two-sided nilpotent ideal of A, then $I \subseteq radA$.

Definition 9 Let A be basic and connected and $\{e_1, \ldots, e_n\}$ be a complete set of primitive orthogonal idempotents of A. The **quiver** of A, denoted by Q_A , is defined as follows:

The points of Q_A are the numbers 1,2,...,n which are in bijective correspondence with the idempotents $e_1, e_2, ..., e_n$.

Given two points $a, b \in (Q_A)_0$, the arrows $\alpha : a \to b$ are in bijective correspondence with the vectors in a basis of the K-vector space $e_b(radA/rad^2A)e_a$.

 Q_A is a finite quiver, because A is a finite dimensional algebra.

Now we can formulate the second main theorem:

Theorem 3 Let A be basic and connected. There exists an admissible ideal I of KQ_A such that $A \cong KQ_A/I$.