Reflection Functors

Valerio Gianella Luca Matasci Doriano Regazzi Federico Remonda

October 27, 2008

1 The Euler Form

Definition 1.1. Let $Q = (Q_0, Q_1, s, t)$ be a quiver. A vertex $i \in Q_0$ is called a sink (respectively a source) if there is no arrow $\alpha \in Q_1$ such that $s(\alpha) = i$ (resp. $t(\alpha) = i$).

Given any vertex i, let $\sigma_i Q$ be the quiver obtained from Q by reversing all arrows which start or end at i.

Definition 1.2. Let $n = |Q_0|$. The Euler form of Q is the bilinear form $\langle -, - \rangle : \mathbb{Z}^n \times \mathbb{Z}^n \to \mathbb{Z}$ defined by

$$\langle x, y \rangle := \langle x, y \rangle_Q = \sum_{i \in Q_0} x_i y_i - \sum_{\alpha \in Q_1} x_{s(\alpha)} y_{t(\alpha)}.$$

We then define a symmetric bilinear form (-,-) on \mathbb{Z}^n by setting

$$(x,y) := \langle x,y \rangle + \langle y,x \rangle$$
.

Note that the symmetric bilinear form (-,-) does not depend on the direction of the arrows of Q.

Let us now assume that Q has no loops. The reflection with respect to a vertex i is the linear map

$$\sigma_i: \mathbb{Z}^n \to \mathbb{Z}^n$$
 defined by $\sigma_i(x) := x - 2\frac{(x, e_i)}{(e_i, e_i)}e_i$

where e_i is the *i*-th vector of the canonical basis of \mathbb{Z}^n . This map is well defined, since $(e_i, e_i) \neq 0$ for all $i \in Q_0$ because Q has no loops. The fact that the map σ_i is regarded as a reflection can be justified by a geometric interpretation in \mathbb{R}^n (see picture). Finally, it is easy to see that σ_i is an automorphism of \mathbb{Z}^n and that $\sigma_i \circ \sigma_i = \operatorname{Id}_{\mathbb{Z}^n}$.

2 The Reflection Functors S_i^+ and S_i^-

Let Q be a quiver, and let i be a vertex of Q. We now define two functors S_i^+ and S_i^- . For this purpose, fix two representations X and X' of Q, as well as a morphism $\varphi: X \to X'$.

1. If i is a sink of Q we construct

$$S_i^+: \operatorname{Rep}(Q, \mathbb{K}) \to \operatorname{Rep}(\sigma_i Q, \mathbb{K})$$

as follows. Let $Y := S_i^+(X)$, where $Y = ((Y_i), (Y_\alpha))_{i \in Q_0, \alpha \in Q_1}$ is the following representation of $\sigma_i Q$. The vector spaces $(Y_i)_{i \in Q_0}$ are given by $Y_j = X_j$ for vertices $i \neq j$, and

$$Y_i = \operatorname{Ker} \left(\xi : \bigoplus_{\substack{\alpha \in Q_1 \\ t(\alpha) = i}} X_{s(\alpha)} \longrightarrow X_i \right)$$

where $\xi = (X_{\alpha})$ is the map induced by the X_{α} with $t(\alpha) = i$.

We now define the linear maps Y_{α} . For an arrow α in Q with $t(\alpha) \neq i$, set $Y_{\alpha} := X_{\alpha}$. If $t(\alpha) = i$, define $Y_{\alpha} : Y_{i} \to Y_{s(\alpha)} = X_{s(\alpha)}$ as the composition

$$Y_i \stackrel{\check{\xi}}{\longleftrightarrow} \bigoplus_{\substack{\alpha \in Q_1 \\ t(\alpha)=i}} X_{s(\alpha)} \stackrel{pr}{\longrightarrow} X_{s(\alpha)}$$

where pr denotes the canonical projection onto $X_{s(\alpha)}$.

It remains to define the image of the morphism $\varphi: X \to X'$ under the functor S_i^+ . Let $\psi:=S_i^+(\varphi)$, where $\psi: Y \to Y'$ is the following morphism. Set $\psi_j=\varphi_j$ if $j\neq i$, and define $\psi_i: Y_i\to Y_i'$ as the restriction of the map

$$(\varphi_{s(\alpha)}): \bigoplus_{\substack{\alpha \in Q_1 \\ t(\alpha)=i}} X_{s(\alpha)} \longrightarrow \bigoplus_{\substack{\alpha \in Q_1 \\ t(\alpha)=i}} X'_{s(\alpha)}.$$

2. If i is a source of Q, we construct

$$S_i^- : \operatorname{Rep}(Q, \mathbb{K}) \to \operatorname{Rep}(\sigma_i Q, \mathbb{K})$$

in a dual fashion as follows. Let $Y := S_i^-(X)$, where we define $Y = ((Y_i), (Y_\alpha))_{i \in Q_0, \alpha \in Q_1}$ as the following representation of $\sigma_i Q$. The vector spaces $(Y_i)_{i \in Q_0}$ are given by $Y_j = X_j$, for vertices $i \neq j$, and

$$Y_i = \operatorname{Coker}\left(\xi : X_i \longrightarrow \bigoplus_{\substack{\alpha \in Q_1 \\ s(\alpha) = i}} X_{t(\alpha)}\right)$$

where $\xi = (X_{\alpha})$ is the map induced by the X_{α} with $s(\alpha) = i$.

We now define the linear maps Y_{α} . For an arrow α in Q with $s(\alpha) \neq i$, set $Y_{\alpha} := X_{\alpha}$. If $s(\alpha) = i$, define $Y_{\alpha} : Y_{t(\alpha)} = X_{t(\alpha)} \to Y_i$ as the composition

$$X_{t(\alpha)} \stackrel{i}{\hookrightarrow} \bigoplus_{\substack{\alpha \in Q_1 \\ s(\alpha) = i}} X_{t(\alpha)} \stackrel{\check{\xi}}{\longrightarrow} Y_i$$

where i denotes the inclusion map, and $\check{\xi}$ is the projection onto $Y_i = \operatorname{Coker}(\xi)$.

The image $\psi := S_i^-(\varphi)$ of the morphism φ is defined as follows. Let $\psi_j = \varphi_j$ if $j \neq i$, and define $\psi_i : Y_i \to Y_i'$ as the map induced by

$$(\varphi_{t(\alpha)}): \bigoplus_{\substack{\alpha \in Q_1 \\ s(\alpha)=i}} X_{t(\alpha)} \longrightarrow \bigoplus_{\substack{\alpha \in Q_1 \\ s(\alpha)=i}} X'_{t(\alpha)}.$$

Example 1. We now apply S_2^+ to the following quiver

with the representation given by

$$X_j = \begin{cases} \mathbb{K} & \text{if } j = 1\\ 0 & else \end{cases}$$

and $X_{\alpha} = 0$ for any arrow α , i.e. all linear maps are zero. $S_2^+ : Rep(Q, \mathbb{K}) \to Rep(\sigma_2 Q, \mathbb{K})$. Then we obtain

- $S_2^+(X_1) = \mathbb{K} = Y_1$
- $S_2^+(X_2) = \text{Ker}\xi$, with $\xi: \bigoplus_{\substack{\alpha \in Q_1 \\ s(\alpha)=i}} X_{s(\alpha)} = \mathbb{K} \bigoplus 0 \to 0 = X_2$ and therefore $\text{Ker}\xi = \mathbb{K} = Y_2$
- $S_2^+(X_3) = 0 = Y_3$

Let i be a sink of Q. Then we define a natural monomorphism

$$\iota_i X: S_i^- S_i^+ X \to X$$

by letting $(\iota_i X)_j = id_{X_j}$ for a vertex $j \neq i$, and letting $(\iota_i X)_i$ be the canonical map

$$(S_i^- S_i^+ X)_i = \operatorname{Coker} \check{\xi} \cong \operatorname{Im} \xi \to X_i.$$

Example 2. Let Q be the following quiver, where $X_1 = 0$, $X_2 = \mathbb{K}^2$ and $X_3 = \mathbb{K}$. The linear map $X_1 \to X_2$ is again the zero map, while the linear map $X_3 \to X_2$ is given by the inclusion. We now look at i_2X . We first apply S_2^+ to the quiver, obtaining

- $S_2^+ X_1 = X_1$
- $S_2^+ X_2 = \text{Ker} \xi \text{ with } \xi : \mathbb{K} \bigoplus 0 \to \mathbb{K}^2$. So we have $S_2^+ X_2 = 0$
- $S_2^+ X_3 = X_3$

We now apply the functor S_2^- to the resulting quiver and we obtain

- $S_2^- S_2^+ X_1 = S_2^- X_1 = X_1$
- $S_2^-S_2^+X_2 = \operatorname{Coker}\xi$ with $\xi: 0 \to \mathbb{K} \bigoplus 0$. So we have $S_2^-S_2^+X_2 = \mathbb{K}$
- $\bullet \ S_2^- S_2^+ X_3 = S_2^- X_3 = X_3$

Let i be a source of Q. Then we define a natural epimorphism

$$\pi_i X: X \to S_i^+ S_i^- X$$

by letting $(\pi_i X)_j = id_{X_j}$ for a vertex $j \neq i$, and letting $(\pi_i X)_i$ be the canonical map

$$X_i \to \operatorname{Im} \xi \cong \operatorname{Ker} \hat{\xi} = (S_i^+ S_i^- X)_i.$$

Lemma 2.1. S_i^+ and S_i^- are functors, that is, $S_i^{\pm}id_X = id_{S_i^{\pm}}$ for every representation X and $S_i^{\pm}(\phi\psi) = (S_i^{\pm}\phi)(S_i^{\pm}\psi)$ for every pair $\phi: X \to Y$ and $\psi: Y \to Z$ of morphisms.

Proof. Clear

Lemma 2.2. Let X, X' be representation of Q and i be a vertex.

- $(1) S_i^{\pm}(X \bigoplus X') = S_i^{\pm} X \bigoplus S_i^{\pm} X'$
- (2) $X = (S_i^- S_i^+ X) \bigoplus \operatorname{Coker} \iota_i X \text{ and } X = (S_i^+ S_i^- X) \bigoplus \operatorname{Ker} \pi_i X$
- (3) If Coker $\iota_i X = 0$, then dim $S_i^+ X = \sigma_i(\dim X)$.
- (4) If Ker $\pi_i X = 0$, then $\dim S_i^- X = \sigma_i(\dim X)$.

Example 3. Let us now apply the functor S_2^- to the quiver S_2^+Q of example 1, then we have:

- $S_2^-(Y_1) = \mathbb{K} = X_1$
- $S_2^-(Y_2) = \operatorname{Coker}\xi$, with $\xi: Y_i = \mathbb{K} \to \mathbb{K} \bigoplus 0 = \bigoplus_{\substack{\alpha \in Q_1 \\ t(\alpha) = i}} Y_{t(\alpha)}$ and for this $\operatorname{Coker}\xi = 0 = X_3$
- $S_2^-(Y_3) = 0 = X_3$

Since $\operatorname{Coker} \xi = 0$, we can apply point (3) of Lemma 2.2 to check the result

$$\sigma_{2}(\dim X) = \dim X - \frac{2(\dim(X), e_{2})}{(e_{2}, e_{2})} e_{2}$$

$$= \begin{pmatrix} 1\\0\\0 \end{pmatrix} - \frac{2(\langle\dim X, e_{2}\rangle + \langle e_{2}, \dim X\rangle)}{2\langle e_{2}, e_{2}\rangle} e_{2}$$

$$= \begin{pmatrix} 1\\0\\0 \end{pmatrix} - \frac{\left\langle \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\rangle + \left\langle \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right\rangle}{\left\langle \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\rangle} \begin{pmatrix} 0\\1\\0 \end{pmatrix}$$

$$= \begin{pmatrix} 1\\0\\0 \end{pmatrix} - \frac{-1+0}{1} \begin{pmatrix} 0\\1\\0 \end{pmatrix}$$

$$= \dim S_{2}^{+} X$$