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Partial derivative

Definition
Let d ∈ N, α = (α1, . . . , αd) ∈ Nd

0 be a multi index with
absolute value |α| = α1 + . . . + αd and x = (x1, . . . , xd) ∈ Rd .
For u a real valued function which is sufficiently smooth, the
partial derivative is given by

Dαu(x): =

(
∂

∂x1

)α1

· . . . ·
(

∂

∂xd

)αd

· u(x1, . . . , xd).
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Ck,κ(Ω)

Let k ∈ N0 and κ ∈ (0, 1).

C k,κ(Ω) : = {u : Ω → R |Dku is Hölder continuous
with exponent κ}.

The associated norm is

‖u‖C k,κ(Ω): = ‖u‖C k (Ω)+
∑
|α|=k

sup
x ,y∈Ω,x 6=y

| D |α|u(x)− D |α|u(y) |
| x − y |κ
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Lipschitz domain

Simplest case:
There exists a function γ : Rd−1 → R such that

Ω : = {x ∈ Rd | xd < γ(x̃) for all x̃ = (x1, . . . , xd−1) ∈ Rd−1}.

Definition
When γ is Lipschitz, then Ω is said to be a Lipschitz
hypograph with boundary

∂Ω = : Γ : = {x ∈ Rd | xd = γ(x̃) for all x̃ ∈ Rd−1}.
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Lipschitz domain

Definition
An open set Ω ⊂ Rd , d ≥ 2 is a Lipschitz domain if Γ is
compact and if there exist finite families {Wi} and {Ωi} such
that:

1 {Wi} is a finite open cover of Γ, that is Wi ⊂ Rd is open
for all i ∈ N and Γ ⊆ ∪iWi .

2 Each Ωi can be transformed into a Lipschitz hypograph
by a rigid motion

3 For all i ∈ N the equality Wi ∩ Ω = Wi ∩ Ωi .

The local representation of the boundary Γ is in general
not unique.
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Example of a non-lipschitz domain

Figure: Example of a non-lipschitz domain in 2D.
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L1
loc(Ω)

Definition

Lloc
1 : = {u : Ω → R | u is locally integrable }.

That means, u is integrable with respect to any bounded
closed subset K of Ω.

Remark
A function u : Ω → R ∈ Lloc

1 (Ω) is not, in general, in L1(Ω).
On the other hand, u ∈ L1(Ω) implies that u ∈ Lloc

1 (Ω).∫
Ω

u(x)dx < ∞⇒
∫
K

u(x)dx < ∞, ∀K ⊆ Ω.
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L1
loc(Ω)

Example

Let Ω = (0, 1) and u(x) = 1
x . We have

1∫
0

u(x)dx = lim
ε→0

1∫
ε

1
x

dx = lim
ε→0

ln
(

1
ε

)
= ∞.

That implies u /∈ L1(Ω).
Let K = [a, b] ⊂ (0, 1) with 0 < a < b < 1. Then

∫
K

u(x)dx =

b∫
a

1
x

dx = ln
(

b
a

)
< ∞.

That implies u ∈ Lloc
1 (Ω).
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General Partial Derivative

Definition
A function u ∈ Lloc

1 (Ω) has a generalized partial derivative
w.r.t. xi , if there exists v ∈ Lloc

1 (Ω) such that

∫
Ω

v(x)ϕ(x)dx = −
∫
Ω

u(x)
∂

∂xi
ϕ(x)dx, for all ϕ ∈ C∞

0 (Ω).

The GPD is denoted by ∂
∂xi

u(x) : = v(x).

We define the space of test functions by C∞
0 (Ω) : = D(Ω).
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Convergence in D(Ω)

Definition
Let {ϕn}n∈N ⊂ Ω.
{ϕn} converges to ϕ in D(Ω) if

1 ∃K ⊂ Ω compact subset such that supp ϕn ⊂ K ,∀n ∈ N
2 Dαϕn −−−→

‖·‖C∞0

Dαϕ, ∀α ∈ Nd .

Definition
A complex valued continuous linear map T : D(Ω) → C is
called a distribution. T is continuous if

lim
n→∞

T (ϕn) = T (ϕ),

for any {ϕn}n∈N which converges to ϕ in D(Ω).
The set of all distributions is denoted by D

′
(Ω).
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Distribution

Definition
Let T ∈ D ′(Ω). Its partial derivative w.r.t xi , 1 ≤ i ≤ d , in
the sense of distribution is

∂iT (ϕ) = −T (∂iϕ), for all ϕ ∈ D(Ω)

Definition
For a function u ∈ Lloc

1 (Ω) we define the distribution

Tu(ϕ) : =

∫
Ω

u(x)ϕ(x)dx, for ϕ ∈ D(Ω).
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Example of derivative in the sense of distribution

Example
Let v(x) = sign(x) ∈ Lloc

1 ([−1, 1]) and compute its derivative
in the sense of distribution.∫ 1

−1

∂

∂x
sign(x)ϕ(x)dx = −

∫ 1

−1
sign(x)

∂

∂x
ϕ(x)dx = 2ϕ(0),

for all ϕ ∈ D(Ω).
We obtain

∂

∂x
sign(x) = 2δ0 ∈ D ′(Ω).



Useful definitions Distributions Sobolev spaces Trace Theorems Green’s functions

Example of derivative in the sense of distribution

SOBOLEV SPACES
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W k
p (Ω)

Definition
Let k ∈ N0, the Sobolev space is defined as

W k
p (Ω) : = C∞(Ω)

‖·‖W k
p (Ω) .

The norm is given by

‖u‖W k
p (Ω): =


(∑

|α|≤k‖Dαu‖p
Lp(Ω)

) 1
p
, for 1 ≤ p < ∞,

max|α|≤k‖Dαu‖L∞(Ω), for p = ∞.

W̊
k
p(Ω) : = C∞

0 (Ω)
‖·‖W k

p (Ω) .
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W k
p (Ω)

Sobolev spaces can be define for all s ∈ R.
For 0 < s, with s = k + κ, k ∈ N0 and κ ∈ (0, 1), the
norm is

‖u‖W s
p (Ω): =

(
‖u‖p

W k
p (Ω)

+|u|pW s
p (Ω)

) 1
p
,

where

|u|pW s
p (Ω) =

∑
|α|=k

∫
Ω

∫
Ω

|Dαu(x)− Dα(y)|p

|x − y |d+pκ
dxdy
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W k
p (Ω)

For s < 0 and 1 < p < ∞, W s
p (Ω) : =

(
W̊

−s
q (Ω)

)′
where

1
p + 1

q = 1. The norm is

‖u‖W s
p (Ω) := sup

v∈W̊−s
q (Ω),v 6=0

|〈u, v〉Ω|
‖v‖W−s

q (Ω)
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W s
2 (Ω)

The Sobolev space W s
2 (Ω) admits an inner-product

For s = k ∈ N0

〈u, v〉W k
2 (Ω) : =

∑
|α|≤k

∫
Ω

Dαu(x)Dαv(x)dx

For s = k + κ with κ ∈ (0, 1) and k ∈ N0

〈u, v〉W s
2 (Ω) : = 〈u, v〉W k

2 (Ω)+∑
|α|=k

∫
Ω

∫
Ω

(Dαu(x)− Dαu(y))(Dαv(x)− Dαv(y))

|x − y |d+2κ
dxdy
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Tempered distribution

Definition
We define the space of rapidly decreasing functions

S(Rd) = {ϕ ∈ C∞(Rd) | ‖ϕ‖k,l< ∞},

where

‖ϕ‖k,l= sup
x∈Rd

(|x |k + 1)
∑
|α|≤l

|Dαϕ(x)| < ∞, for all k , l ∈ N0.

The space of tempered distributions S ′(Rd) is

S ′(Rd) : = {T : S(Rd) → C | T complex valued cont. lin. map}.
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Tempered distribution

For s ∈ R, the Bessel potential operator J s : S(Rd) → R
is given by

J su(x) : =
1

(2π)
d
2

∫
Rd

(1 + |ξ|2)
s
2 û(ξ)ei〈x ,ξ〉dξ,

for u ∈ S(Rd).

(J sT )(ϕ) : = T (J sϕ), for all ϕ ∈ S(Rd).
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Hs (R)

Definition
The Sobolev space over Rd is defined as

H s(Rd) : = {v ∈ S ′(Rd) | J sv ∈ L2(Rd)}, for all s ∈ R.

The norm is

‖v‖2
Hs(Rd ): =

∫
Rd

(1 + |ξ|2)s |v̂(ξ)|2dξ.



Useful definitions Distributions Sobolev spaces Trace Theorems Green’s functions

Relation between W k
p and Hk spaces

Theorem
For all s ∈ R, we have the following relation

H s(Rd) = W s
2 (Rd).

Let Ω be a bounded domain in Rd ,

H s(Ω) : = {v = ṽ|Ω | ṽ ∈ H s(Rd)},

the norm is given by

‖v‖Hs(Ω): = inf
ṽ∈Hs(Rd ),ṽ|Ω=v

‖ṽ‖Hs(Rd ).
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Relation between W k
p and Hk spaces

Definition

H̃ s(Ω) : = C∞
0 (Ω)

‖·‖Hs (Rd ) , H s
0(Ω) : = C∞

0 (Ω)
‖·‖Hs (Ω)
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Relation between W k
p and Hk spaces

Theorem
Let Ω ∈ Rd be a Lipschitz domain. For s ≥ 0 we have

H̃ s(Ω) ⊂ H s
0(Ω).

Moreover,

H̃ s(Ω) = H s
0(Ω) for s /∈ {1

2
,
3
2
,
5
2
, . . .}.

H̃ s(Ω) = [H−s(Ω)]′, H s(Ω) = [H̃−s(Ω)]′
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Relation between W k
p and Hk spaces

For s < 0, we define H s(Γ) : = (H−s(Γ))′ with the norm

‖u‖Hs(Γ): = sup
0 6=v∈H−s(Γ)

〈u, v〉Γ
‖v‖H−s(Γ)
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Espace de Fréchet

Definition
The Sobolev spaces over a bounded domain Ω ∈ Rd allow us
to define the Fréchet space

H1
loc(Ω) : = {v ∈ D ′(Ω) |‖v‖H1(B)< +∞

for all bounded B ⊂ Ω},

and the space

H1
comp(Ω) : = {v ∈ D ′(Ω) | v ∈ H1(Ω), v has compact support}

Remark
We see that H1

comp(Ω) ⊂ H1
loc(Ω).
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Sobolev Embedding Theorem

Theorem (Sobolev Embedding Theorem.)

Let Ω be an open subset of Rd with a lipschitz continuous
boundary. The following continuous embedding holds

For all s ∈ R, H s+1(Ω) ⊂ H s(Ω).
For k ∈ N0, if 2(k −m) > d, then Hk(Ω) ⊂ C m(Ω̄).
For all s ∈ R, if

d ≤ s for p = 1,
d
p

< s for p > 1

then W s
p (Ω) ⊂ C (Ω)
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Sobolev Embedding Theorem

Our goal is to study the continuity of function in Sobolev
space.
Take m = 0.

1 If d = 1, 2(k − 0) > 1 is valid ∀k ≥ 1.
We have H1(Ω) ⊂ C 0(Ω̄).
Moreover, as Hk+1(Ω) ⊂ Hk(Ω),

Hk+1(Ω) ⊂ Hk(Ω) ⊂ . . . ⊂ H1(Ω) ⊂ C 0(Ω̄).

2 If d = 2, is H1(Ω) ⊂ C 0(Ω̄)?
No,

H1(Ω) * C 0(Ω̄)!

We have
H2(Ω) ⊂ C 0(Ω̄).
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Sobolev Embedding Theorem

TRACE THEOREMS
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Trace Theorem

We recall the interior trace operator
γD : = γ int

0 : C∞(Ω) → C∞(∂Ω).

Theorem (Trace Theorem.)

Let Ω be a C k−1,1-domain. For 1
2 < s ≤ k the interior trace

operator
γD : H s(Ω) → H s− 1

2 (Γ),

where γDv : = v|Γ, is bounded. There exists CT > 0 such that

‖γDv‖
Hs− 1

2 (Γ)
≤ CT‖v‖Hs(Ω) for all v ∈ H s(Ω).

For a lipschitz domain Ω, put k = 1.
γD : H s(Ω) → H s− 1

2 (Ω) for s ∈ (1
2 , 1]. That is true for

s ∈ (1
2 ,

3
2)
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Inverse Trace Theorem

Theorem (Inverse Trace Theorem.)

The trace operator γD : H s(Ω) → H s− 1
2 (Γ) has a continuous

right inverse operator

E : H s− 1
2 (Γ) → H s(Ω)

satisfying (γD ◦ E)(w) = w for all w ∈ H s− 1
2 (Γ). There exists

a constant CI > 0 such that

‖Ew‖Hs(Ω)≤ CI‖w‖Hs− 1
2 (Γ)

, for all w ∈ H s− 1
2 (Γ).
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Inverse Trace Theorem

γD : H s(Ω) → H s− 1
2 (Γ) is surjective and its continuous

right inverse E : H s− 1
2 (Γ) → H s(Ω) is injective.

With the two last Theorems, we can redefine the Sobolev
space H s(Γ).
For s > 0. H s(Γ) can be seen as the space of traces of
H s+ 1

2 (Ω).
The interest of fractional Sobolev spaces comes from the
use of the Green’s theorems in BEM.
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Inverse Trace Theorem

GREEN’S FORMULA AND
FUNCTIONS - Fundamental

solutions
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Green’s Theorem

Theorem
1 For u ∈ H2(Ω) and v ∈ H1(Ω), the first Green’s formula

is
〈∆u, v〉Ω = −〈∇u,∇v〉Ω + 〈γD

∂u
∂n

, γDv〉∂Ω.

2 For u, v ∈ H2(Ω), the second Green’s formula is

〈∆u, v〉Ω−〈∆v , u〉Ω = 〈γD
∂u
∂n

, γDv〉∂Ω−〈γD
∂v
∂n

, γDu〉∂Ω.
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Fundamental solution

Let us consider a scalar partial differential equation

(Lu)(x) = f (x), x ∈ Ω ⊂ Rd .

Definition
A fundamental solution of the PDE is the solution of

(LyG (x , y))(x , y) = δ0(y − x), x , y ∈ Rd ,

in the distributional sense.

Green’s function of a PDE is a fundamental solution satisfying
the boundary conditions.
Green’s functions are distributions.
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Example of Green’s function

Example
Compute the Green’s function G (x , y) such that

u(x) =

∫ 1

0
G (x , y)f (y)dy, for x ∈ (0, 1),

is the unique solution of the Dirichelet BVP{
−u′′(x) = f (x), for x ∈ (0, 1)

u(0) = u(1) = 0.
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Example of Green’s function

Solve −G ′′(x , y) = δ(x , y) and split (0, 1) into 0 < y < x
and x < y < 1.
−G ′′ = 0 on each side

⇒ G (x , y) =

{
a1(x)y + b1(x), y ∈ (0, x)

a2(x)y + b2(x), y ∈ (x , 1)

Boundary conditions ⇒ b1(x) = 0 and b2(x) = −a2(x).
∀ϕ ∈ D([0, 1]) solve

〈−G ′′(x , ·), ϕ〉 = ϕ(x) ⇒ 〈G (x , ·), ϕ′′〉 = −ϕ(x).

G (x , y) =

{
(1− x)y , y ∈ (0, x)

x(1− y), y ∈ (x , 1)
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Fundamental solution of Laplace operator

Let us consider the Laplace operator

(Lu)(x) : = −∆u(x) for x ∈ Rd , d = 2, 3.

The fundamental solution G (x , y) is the distributional
solution of the PDE

−∆yG (x , y) = δ0(y − x) for x , y ∈ Rd .

First put

G (x , y) = v(z), where z = y − x .

Hence solve

−∆v(z) = δ0(z), z ∈ Rd .
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Fundamental solution of Laplace operator

We apply the Fourier transformation and obtain

v̂(ξ) =
1

(2π)
d
2

1
|ξ|2

∈ S ′(Rd)

Definition
For a distribution T ∈ S ′(Rd), the Fourier transform is given
by

T̂ (ϕ) = T (ϕ̂), for all ϕ ∈ S(Rd).

Hence, we have to solve

〈v̂ , ϕ〉L2(Rd ) = 〈v , ϕ̂〉L2(Rd ), for ϕ ∈ S(Rd).
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3D case

For d = 3.
The fundamental solution is

G (x , y) =
1

4π

1
|x − y |

, x , y ∈ R3.

G (x , y) is continuous (C∞) except when x = y .
The fundamental solution is bounded at the infinity.

When x or y →∞⇒ G (x , y) → 0.

G (x , y) /∈ L2(R3). Consider v(z) = 1
z

‖v(z)‖L2(R3)=

∫ ∞

−∞

1
z2 dz =

∫ 0

−∞

1
z2 dz︸ ︷︷ ︸

→∞

+

∫ ∞

0

1
z2 dz︸ ︷︷ ︸

→∞

→∞
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2D case

For d = 2.
The fundamental solution is

G (x , y) = − 1
2π

log(|x − y |), x , y ∈ R2.

G (x , y) ∈ C∞ except on x = y .
The fundamental solution is unbounded at the infinity.

When x or y →∞⇒ U(x , y) →∞.

The problem of at the infinity is solved with the boundary
conditions in the Green function.
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2D case

The fundamental solution for the Helmolzt equation

−∆u(x)− 2ku(x) = 0 for x ∈ Rd , k ∈ R,

is
for d = 3

Gk(x , y) =
1

4π

e ik|x−y |

|x − y |
, x , y ∈ R3.

for d = 2

Gk(x , y) =
1

2π
Y0(k |x − y |), x , y ∈ R3,

where Y0 = second Bessel function of order zero.
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