Sobolev spaces, Trace theorems and Green's functions.

Boundary Element Methods for Waves Scattering Numerical Analysis Seminar.

Orane Jecker

October 21, 2010

《曰》 《國》 《臣》 《臣》

-2

Useful definitions 00000000	Distributions 0000	Sobolev spaces 000000000000000	Trace Theorems 0000	Green's functions
Plan				

INTRODUCTION

- 1 Useful definitions
- 2 Distributions

MAIN SUBJECTS

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Useful definitions	Distributions	Sobolev spaces	Trace Theorems	Green's functions
0000000	0000	000000000000000000000000000000000000000	0000	00000000
Partial derivative				

Let $d \in \mathbb{N}$, $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{N}_0^d$ be a multi index with absolute value $|\alpha| = \alpha_1 + \ldots + \alpha_d$ and $\mathbf{x} = (x_1, \ldots, x_d) \in \mathbb{R}^d$. For u a real valued function which is sufficiently smooth, the partial derivative is given by

$$D^{\alpha}u(\mathbf{x}) := \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \cdot \ldots \cdot \left(\frac{\partial}{\partial x_d}\right)^{\alpha_d} \cdot u(x_1,\ldots,x_d).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Useful definitions	Distributions	Sobolev spaces	Trace Theorems	Green's functions
0000000	0000	000000000000000000000000000000000000000	0000	000000000
$C^{\kappa,\kappa}(\Omega)$				

• Let
$$k \in \mathbb{N}_0$$
 and $\kappa \in (0, 1)$.

 $C^{k,\kappa}(\Omega) := \{ u : \Omega \to \mathbb{R} \mid D^k u \text{ is Hölder continuous}$ with exponent $\kappa \}.$

• The associated norm is

$$\|u\|_{C^{k,\kappa}(\Omega)} := \|u\|_{C^{k}(\Omega)} + \sum_{|\alpha|=k} \sup_{\substack{x,y\in\Omega, x\neq y}} \frac{|D^{|\alpha|}u(x) - D^{|\alpha|}u(y)|}{|x-y|^{\kappa}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Useful definitions	Distributions	Sobolev spaces	Trace Theorems	Green's functions
000000				
Lipschitz domain				

Simplest case: There exists a function $\gamma:\mathbb{R}^{d-1}\to\mathbb{R}$ such that

$$\Omega := \{x \in \mathbb{R}^d \mid x_d < \gamma(\tilde{x}) \text{ for all } \tilde{x} = (x_1, \dots, x_{d-1}) \in \mathbb{R}^{d-1}\}.$$

Definition

When γ is Lipschitz, then Ω is said to be a Lipschitz hypograph with boundary

$$\partial \Omega = : \Gamma := \{ x \in \mathbb{R}^d \mid x_d = \gamma(\tilde{x}) \text{ for all } \tilde{x} \in \mathbb{R}^{d-1} \}$$

・ロト・日本・日本・日本・日本・日本

Useful definitions	Distributions	Sobolev spaces	Trace Theorems	Green's functions
0000000				
Lipschitz domain				

An open set $\Omega \subset \mathbb{R}^d$, $d \ge 2$ is a Lipschitz domain if Γ is compact and if there exist finite families $\{W_i\}$ and $\{\Omega_i\}$ such that:

- $\{W_i\}$ is a finite open cover of Γ , that is $W_i \subset \mathbb{R}^d$ is open for all $i \in \mathbb{N}$ and $\Gamma \subseteq \bigcup_i W_i$.
- **2** Each Ω_i can be transformed into a Lipschitz hypograph by a rigid motion
- For all $i \in \mathbb{N}$ the equality $W_i \cap \Omega = W_i \cap \Omega_i$.
 - The local representation of the boundary Γ is in general not unique.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Useful definitions	Distributions	Sobolev spaces	Trace Theorems	Green's functions
00000000				
Example of a non-lipschitz d	omain			

Figure: Example of a non-lipschitz domain in 2D.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Useful definitions	Distributions	Sobolev spaces	Trace Theorems	Green's functions
00000000				
$L^{1}_{loc}(\Omega)$				

$$L_1^{\mathsf{loc}} := \{ u : \Omega \to \mathbb{R} \mid u \text{ is locally integrable } \}.$$

That means, u is integrable with respect to any bounded closed subset K of Ω .

Remark

A function $u: \Omega \to \mathbb{R} \in L_1^{\text{loc}}(\Omega)$ is not, in general, in $L_1(\Omega)$. On the other hand, $u \in L_1(\Omega)$ implies that $u \in L_1^{\text{loc}}(\Omega)$.

$$\int\limits_{\Omega} u(x) \mathsf{d} \mathsf{x} < \infty \Rightarrow \int\limits_{\mathcal{K}} u(x) \mathsf{d} \mathsf{x} < \infty, \;\; orall \mathcal{K} \subseteq \Omega$$

$L^{1}_{\text{loc}}(\Omega)$	0000	000000000000000000000000000000000000000	0000	000000000
Examp	le			
Let Ω =	= (0, 1) and $u(.)$	$x) = \frac{1}{x}$. We have	ž	
	$\int_{0}^{1} u(x) dx =$	$\lim_{\epsilon \to 0} \int_{\epsilon}^{1} \frac{1}{x} dx = \lim_{\epsilon \to \infty}$	$\int_{0}^{1} \ln\left(\frac{1}{\epsilon}\right) = \infty.$	
• TI Le	hat implies $u \notin$ It $K = [a, b] \subset$	$L_1(\Omega).$ (0,1) with 0 < a	a < b < 1. Then	
	$\int_{K} u(x)$	$dx = \int_{a}^{b} \frac{1}{x} dx = 1$	$\ln\left(\frac{b}{a}\right) < \infty.$	
• TI	hat implies $u \in$	$L_1^{\mathrm{loc}}(\Omega).$		

Useful definitions

Useful definitions	Distributions	Sobolev spaces	Trace Theorems	Green's functions
0000000				
General Partial Derivative				

A function $u \in L_1^{\text{loc}}(\Omega)$ has a generalized partial derivative w.r.t. x_i , if there exists $v \in L_1^{\text{loc}}(\Omega)$ such that

$$\int\limits_{\Omega} v(x)\varphi(x)\mathsf{d} \mathsf{x} = -\int\limits_{\Omega} u(x)\frac{\partial}{\partial x_i}\varphi(x)\mathsf{d} \mathsf{x}, \text{ for all } \varphi \in C_0^\infty(\Omega).$$

The GPD is denoted by $\frac{\partial}{\partial x_i} u(x) := v(x)$.

We define the space of test functions by $C_0^{\infty}(\Omega) := \mathscr{D}(\Omega)$.

A complex valued continuous linear map $T : \mathscr{D}(\Omega) \to \mathbb{C}$ is called a distribution. T is continuous if

 $\lim_{n\to\infty}T(\varphi_n)=T(\varphi),$

for any $\{\varphi_n\}_{n\in\mathbb{N}}$ which converges to φ in $\mathscr{D}(\Omega)$. The set of all distributions is denoted by $\mathscr{D}'(\Omega)$.

Useful definitions	Distributions ○●○○	Sobolev spaces	Trace Theorems 0000	Green's functions
Distribution				

Let $T \in \mathscr{D}'(\Omega)$. Its partial derivative w.r.t x_i , $1 \le i \le d$, in the sense of distribution is

$$\partial_i T(arphi) = - T(\partial_i arphi), ext{ for all } arphi \in \mathscr{D}(\Omega)$$

Definition

For a function $u \in L_1^{loc}(\Omega)$ we define the distribution

$${\mathcal T}_u(arphi) centcolor = \int\limits_{\Omega} u(x) arphi(x) {
m d} {
m x}, \,\, {
m for} \,\, arphi \in \mathscr{D}(\Omega).$$

Useful definitions	Distributions	Sobolev spaces	Trace Theorems	Green's functions	
0000000	0000	0000000000000000	0000	000000000	
Example of derivative in the sense of distribution					

Example

Let $v(x) = sign(x) \in L_1^{loc}([-1, 1])$ and compute its derivative in the sense of distribution.

$$\int_{-1}^{1} \frac{\partial}{\partial x} \operatorname{sign}(x) \varphi(x) dx = -\int_{-1}^{1} \operatorname{sign}(x) \frac{\partial}{\partial x} \varphi(x) dx = 2\varphi(0),$$

for all $\varphi \in \mathscr{D}(\Omega).$
Ne obtain
 $\frac{\partial}{\partial x} \operatorname{sign}(x) = 2\delta_0 \in \mathscr{D}'(\Omega).$

・ロト・日本・日本・ 日本・ シック・

Useful definitions	Distributions	Sobolev spaces	Trace Theorems	Green's functions
	0000			
Example of derivative in the	sense of distribution			

SOBOLEV SPACES

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Useful definitions	Distributions 0000	Sobolev spaces	Trace Theorems 0000	Green's functions
$W_p^k(\Omega)$				

Let $k \in \mathbb{N}_0$, the Sobolev space is defined as

$$W^k_p(\Omega) := \overline{C^{\infty}(\Omega)}^{\|\cdot\|_{W^k_p(\Omega)}}$$

The norm is given by

$$\begin{split} \|u\|_{W^k_p(\Omega)} &:= \begin{cases} \left(\sum_{|\alpha| \le k} \|D^{\alpha}u\|_{L_p(\Omega)}^p\right)^{\frac{1}{p}}, \text{ for } 1 \le p < \infty, \\ \max_{|\alpha| \le k} \|D^{\alpha}u\|_{L_{\infty}(\Omega)}, \text{ for } p = \infty. \end{cases} \\ & \mathring{W}^k_p(\Omega) &:= \overline{C_0^{\infty}(\Omega)}^{\|\cdot\|_{W^k_p(\Omega)}}. \end{split}$$

▲□▶▲@▶▲≣▶▲≣▶ = ● ● ●

Useful definitions	Distributions 0000	Sobolev spaces ○●○○○○○○○○○○○○	Trace Theorems 0000	Green's functions
$W_p^k(\Omega)$				

Sobolev spaces can be define for all $s \in \mathbb{R}$.

• For 0 < s, with $s = k + \kappa$, $k \in \mathbb{N}_0$ and $\kappa \in (0, 1)$, the norm is

$$\|u\|_{W^{s}_{\rho}(\Omega)} := \left(\|u\|^{\rho}_{W^{k}_{\rho}(\Omega)} + |u|^{\rho}_{W^{s}_{\rho}(\Omega)}\right)^{\frac{1}{\rho}},$$

where

$$|u|_{W_{p}^{s}(\Omega)}^{p} = \sum_{|\alpha|=k} \int_{\Omega} \int_{\Omega} \frac{|D^{\alpha}u(x) - D^{\alpha}(y)|^{p}}{|x - y|^{d + p\kappa}} dxdy$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Useful definitions	Distributions	Sobolev spaces	Trace Theorems	Green's functions
0000000	0000	000000000000000000000000000000000000000	0000	00000000
$W_p^k(\Omega)$				

• For
$$s < 0$$
 and $1 , $W_p^s(\Omega) := \left(\mathring{W}_q^{-s}(\Omega) \right)'$ where $\frac{1}{p} + \frac{1}{q} = 1$. The norm is$

$$\| u \|_{W^{s}_{p}(\Omega)} := \sup_{v \in \mathring{W}^{-s}_{q}(\Omega), v \neq 0} \frac{|\langle u, v \rangle_{\Omega}|}{\| v \|_{W^{-s}_{q}(\Omega)}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Useful definitions	Distributions 0000	Sobolev spaces	Trace Theorems 0000	Green's functions
$W_2^s(\Omega)$				

The Sobolev space $W_2^s(\Omega)$ admits an inner-product

• For $s = k \in \mathbb{N}_0$

$$\langle u, v \rangle_{W_2^k(\Omega)}$$
 := $\sum_{|\alpha| \le k} \int_{\Omega} D^{\alpha} u(x) D^{\alpha} v(x) dx$

• For $s = k + \kappa$ with $\kappa \in (0, 1)$ and $k \in \mathbb{N}_0$

$$\langle u, v \rangle_{W_2^s(\Omega)} := \langle u, v \rangle_{W_2^k(\Omega)} + \\ \sum_{|\alpha|=k} \int_{\Omega} \int_{\Omega} \frac{(D^{\alpha}u(x) - D^{\alpha}u(y))(D^{\alpha}v(x) - D^{\alpha}v(y))}{|x - y|^{d + 2\kappa}} dxdy$$

Useful definitions	Distributions 0000	Sobolev spaces	Trace Theorems 0000	Green's functions
Tempered distribution				

We define the space of rapidly decreasing functions

$$\mathcal{S}(\mathbb{R}^d) = \{ \varphi \in \mathcal{C}^{\infty}(\mathbb{R}^d) \mid \|\varphi\|_{k,l} < \infty \},\$$

where

$$\|arphi\|_{k,l} = \sup_{x\in\mathbb{R}^d} (|x|^k+1) \sum_{|lpha|\leq l} |D^lpha arphi(x)| < \infty, ext{ for all } k,l\in\mathbb{N}_0.$$

The space of *tempered distributions* $\mathcal{S}'(\mathbb{R}^d)$ is

 $\mathcal{S}'(\mathbb{R}^d)$:= { $T : \mathcal{S}(\mathbb{R}^d) \to \mathbb{C} \mid T$ complex valued cont. lin. map}.

Useful definitions	Distributions 0000	Sobolev spaces ○○○○○●○○○○○○○○	Trace Theorems	Green's functions
Tempered distribution				

• For $s \in \mathbb{R}$, the Bessel potential operator $\mathcal{J}^s : \mathcal{S}(\mathbb{R}^d) \to \mathbb{R}$ is given by

$$\mathcal{J}^{\boldsymbol{s}}\boldsymbol{u}(\boldsymbol{x}) := \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} (1+|\xi|^2)^{\frac{\boldsymbol{s}}{2}} \hat{\boldsymbol{u}}(\xi) \mathrm{e}^{i\langle \boldsymbol{x},\xi\rangle} \mathrm{d}\xi,$$

for $u \in \mathcal{S}(\mathbb{R}^d)$.

 $(\mathcal{J}^{s}T)(\varphi) := T(\mathcal{J}^{s}\varphi), \text{ for all } \varphi \in \mathcal{S}(\mathbb{R}^{d}).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◆

Useful definitions	Distributions 0000	Sobolev spaces ○○○○○●○○○○○○○	Trace Theorems 0000	Green's functions
$H^{s}(\mathbb{R})$				

The Sobolev space over \mathbb{R}^d is defined as

 $H^{s}(\mathbb{R}^{d})$: = { $v \in S'(\mathbb{R}^{d}) \mid \mathcal{J}^{s}v \in L_{2}(\mathbb{R}^{d})$ }, for all $s \in \mathbb{R}$.

The norm is

$$\|v\|_{H^{s}(\mathbb{R}^{d})}^{2}$$
: $=\int_{\mathbb{R}^{d}}(1+|\xi|^{2})^{s}|\hat{v}(\xi)|^{2}\mathsf{d}\xi.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Useful definitions 00000000	Distributions 0000	Sobolev spaces	Trace Theorems 0000	Green's functions
Relation between W_p^k and H^k	spaces			

Theorem

For all $s \in \mathbb{R}$, we have the following relation

 $H^{s}(\mathbb{R}^{d}) = W_{2}^{s}(\mathbb{R}^{d}).$

Let Ω be a bounded domain in \mathbb{R}^d ,

$$H^{s}(\Omega)$$
: = { $v = \tilde{v}_{|\Omega} | \tilde{v} \in H^{s}(\mathbb{R}^{d})$ },

the norm is given by

$$\|v\|_{H^{s}(\Omega)}$$
: = $\inf_{\tilde{v}\in H^{s}(\mathbb{R}^{d}), \tilde{v}_{|\Omega}=v} \|\tilde{v}\|_{H^{s}(\mathbb{R}^{d})}.$

Useful definitions	Distributions	Sobolev spaces	Trace Theorems	Green's functions
		000000000000000000000000000000000000000		
Relation between W_p^k and H	^k spaces			

・ロト・西・・田・・田・・日・

Useful definitions	Distributions 0000	Sobolev spaces	Trace Theorems 0000	Green's functions
Relation between W_p^k and H	spaces			

Theorem

Let $\Omega \in \mathbb{R}^d$ be a Lipschitz domain. For $s \ge 0$ we have

 $ilde{H}^{s}(\Omega) \subset H^{s}_{0}(\Omega).$

Moreover,

$$ilde{\mathcal{H}}^{s}(\Omega)=\mathcal{H}^{s}_{0}(\Omega) ext{ for } s \notin \{rac{1}{2},rac{3}{2},rac{5}{2},\ldots\}.$$

 $\tilde{H}^{s}(\Omega) = [H^{-s}(\Omega)]', H^{s}(\Omega) = [\tilde{H}^{-s}(\Omega)]'$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Useful definitions	Distributions	Sobolev spaces	Trace Theorems	Green's functions
0000000	0000	000000000000000000	0000	000000000
Relation between W_p^R and H^*	spaces			

For s < 0, we define $H^{s}(\Gamma) := (H^{-s}(\Gamma))'$ with the norm

$$\|u\|_{H^{\mathfrak{s}}(\Gamma)} := \sup_{0 \neq v \in H^{-s}(\Gamma)} \frac{\langle u, v \rangle_{\Gamma}}{\|v\|_{H^{-s}(\Gamma)}}$$

・ロト・日本・ヨト・ヨト・日・ つへで

Useful definitions	Distributions 0000	Sobolev spaces ○○○○○○○○○●○○○	Trace Theorems 0000	Green's functions
Espace de Fréchet				

The Sobolev spaces over a bounded domain $\Omega \in \mathbb{R}^d$ allow us to define the Fréchet space

$$egin{aligned} &\mathcal{H}^1_{\mathsf{loc}}(\Omega) centcolor &= \{ v \in \mathscr{D}'(\Omega) \mid & \| v \|_{H^1(B)} < +\infty \ & ext{ for all bounded } B \subset \Omega \}, \end{aligned}$$

and the space

 $H^1_{\operatorname{comp}}(\Omega) := \{ v \in \mathscr{D}'(\Omega) \mid v \in H^1(\Omega), v \text{ has compact support} \}$

Remark

We see that $H^1_{\text{comp}}(\Omega) \subset H^1_{\text{loc}}(\Omega)$.

Useful definitions 00000000	Distributions 0000	Sobolev spaces	Trace Theorems 0000	Green's functions
Sobolev Embedding Theorem				

Theorem (Sobolev Embedding Theorem.)

Let Ω be an open subset of \mathbb{R}^d with a lipschitz continuous boundary. The following continuous embedding holds

- For all $s \in \mathbb{R}$, $H^{s+1}(\Omega) \subset H^{s}(\Omega)$.
- For $k \in \mathbb{N}_0$, if 2(k m) > d, then $H^k(\Omega) \subset C^m(\overline{\Omega})$.
- For all $s \in \mathbb{R}$, if

$$d \leq s \text{ for } p = 1, \quad \frac{d}{p} < s \text{ for } p > 1$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

then $W_p^s(\Omega) \subset C(\Omega)$

Our goal is to study the continuity of function in Sobolev space.

Take $\mathbf{m} = \mathbf{0}$.

- If d = 1, 2(k 0) > 1 is valid $\forall k \ge 1$.
 - We have $H^1(\Omega) \subset C^0(\overline{\Omega})$.
 - Moreover, as $H^{k+1}(\Omega) \subset H^k(\Omega)$,

 $H^{k+1}(\Omega) \subset H^k(\Omega) \subset \ldots \subset H^1(\Omega) \subset C^0(\overline{\Omega}).$

If $\mathbf{d} = \mathbf{2}$, is $H^1(\Omega) \subset C^0(\overline{\Omega})$?
• No, $H^1(\Omega) \not\subset C^0$

 $H^1(\Omega) \nsubseteq C^0(\overline{\Omega})!$

• We have

 $H^2(\Omega) \subset C^0(\bar{\Omega}).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Useful definitions 00000000	Distributions 0000	Sobolev spaces	Trace Theorems 0000	Green's functions
Sobolev Embedding Theorem	1			

TRACE THEOREMS

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Jseful definitions	Distributions 0000	Sobolev spaces	Trace Theorems ●○○○	Green's functior
Trace Theorem				
• Μ γ	Ve recall the inter $_D := \gamma_0^{int} : C^\infty(\overline{\Omega})$	ior trace operato $\bar{2}) ightarrow \mathcal{C}^{\infty}(\partial \Omega).$	r	
Theore	em (Trace Theore	em.)		
Let Ω operat	be a $C^{k-1,1}$ -dom	ain. For $\frac{1}{2} < s \leq 1$	k the interio	r trace
	γ_D :	$H^{\mathfrak{s}}(\Omega) \to H^{\mathfrak{s}-\overline{2}}(\Omega)$	(Γ),	
where	$\gamma_D \mathbf{v} := \mathbf{v}_{ \Gamma}, \text{ is be}$	ounded. There ex	kists $C_T > 0$ s	such that
	$\ \gamma_D \mathbf{v}\ _{H^{s-\frac{1}{2}}(\Gamma)} \leq$	$C_T \ v\ _{H^s(\Omega)}$ for	all $v \in H^s(\Omega)$).

• For a lipschitz domain Ω , put k = 1. $\gamma_D : H^s(\Omega) \to H^{s-\frac{1}{2}}(\Omega)$ for $s \in (\frac{1}{2}, 1]$. That is true for $s \in (\frac{1}{2}, \frac{3}{2})$

Useful definitions	Distributions 0000	Sobolev spaces	Trace Theorems ○●○○	Green's functions
Inverse Trace Theorem				

Theorem (Inverse Trace Theorem.)

The trace operator $\gamma_D : H^s(\Omega) \to H^{s-\frac{1}{2}}(\Gamma)$ has a continuous right inverse operator

 $\mathcal{E}: H^{s-\frac{1}{2}}(\Gamma) \to H^{s}(\Omega)$

satisfying $(\gamma_D \circ \mathcal{E})(w) = w$ for all $w \in H^{s-\frac{1}{2}}(\Gamma)$. There exists a constant $C_l > 0$ such that

 $\|\mathcal{E}w\|_{H^{s}(\Omega)} \leq C_{I} \|w\|_{H^{s-\frac{1}{2}}(\Gamma)}, \text{ for all } w \in H^{s-\frac{1}{2}}(\Gamma).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Useful definitions	Distributions 0000	Sobolev spaces 00000000000000	Trace Theorems ○0●0	Green's functions
Inverse Trace Theorem				

- $\gamma_D : H^s(\Omega) \to H^{s-\frac{1}{2}}(\Gamma)$ is surjective and its continuous right inverse $\mathcal{E} : H^{s-\frac{1}{2}}(\Gamma) \to H^s(\Omega)$ is injective.
- With the two last Theorems, we can redefine the Sobolev space H^s(Γ).
- For s > 0. H^s(Γ) can be seen as the space of traces of H^{s+¹/₂}(Ω).
- The interest of fractional Sobolev spaces comes from the use of the Green's theorems in BEM.

Useful definitions	Distributions 0000	Sobolev spaces 00000000000000	Trace Theorems ○○○●	Green's functions
Inverse Trace Theorem				

GREEN'S FORMULA AND FUNCTIONS - Fundamental solutions

◆ロ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ◆ □ ▶

Useful definitions	Distributions 0000	Sobolev spaces	Trace Theorems 0000	Green's functions ●○○○○○○○
Green's Theorem				

Theorem

• For $u \in H^2(\Omega)$ and $v \in H^1(\Omega)$, the first Green's formula is $\langle \Delta u, v \rangle_{\Omega} = -\langle \nabla u, \nabla v \rangle_{\Omega} + \langle \gamma_D \frac{\partial u}{\partial \mathbf{n}}, \gamma_D v \rangle_{\partial \Omega}.$

• For $u, v \in H^2(\Omega)$, the second Green's formula is

$$\langle \Delta u, v \rangle_{\Omega} - \langle \Delta v, u \rangle_{\Omega} = \langle \gamma_D \frac{\partial u}{\partial \mathbf{n}}, \gamma_D v \rangle_{\partial \Omega} - \langle \gamma_D \frac{\partial v}{\partial \mathbf{n}}, \gamma_D u \rangle_{\partial \Omega}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Useful definitions 00000000	Distributions 0000	Sobolev spaces	Trace Theorems 0000	Green's functions
Fundamental solution				

Let us consider a scalar partial differential equation

 $(\mathcal{L}u)(x) = f(x), x \in \Omega \subset \mathbb{R}^d.$

Definition

A fundamental solution of the PDE is the solution of

$$(\mathcal{L}_{y}G(x,y))(x,y) = \delta_{0}(y-x), x, y \in \mathbb{R}^{d},$$

in the distributional sense.

Green's function of a PDE is a fundamental solution satisfying the boundary conditions. Green's functions are distributions.

Useful definitions	Distributions	Sobolev spaces	Trace Theorems	Green's functions
00000000	0000	00000000000000	0000	
Example of Green's function				

Example

Compute the Green's function G(x, y) such that

$$u(x)=\int_0^1 G(x,y)f(y) \mathrm{d} y, ext{ for } x\in (0,1),$$

is the unique solution of the Dirichelet BVP

$$egin{cases} -u''(x) = f(x), \ ext{for} \ x \in (0,1) \ u(0) = u(1) = 0. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Useful definitions 00000000	Distributions 0000	Sobolev spaces	Trace Theorems 0000	Green's functions
Example of Green's function				

- Solve $-G''(x, y) = \delta(x, y)$ and split (0, 1) into 0 < y < xand x < y < 1.
- -G'' = 0 on each side

$$\Rightarrow G(x,y) = \begin{cases} a_1(x)y + b_1(x), y \in (0,x) \\ a_2(x)y + b_2(x), y \in (x,1) \end{cases}$$

Boundary conditions ⇒ b₁(x) = 0 and b₂(x) = -a₂(x).
∀φ ∈ D([0, 1]) solve

 $\langle -G''(x,\cdot), \varphi \rangle = \varphi(x) \Rightarrow \langle G(x,\cdot), \varphi'' \rangle = -\varphi(x).$

$$G(x,y) = \begin{cases} (1-x)y, y \in (0,x) \\ x(1-y), y \in (x,1) \end{cases}$$

Useful definitions	Distributions 0000	Sobolev spaces 000000000000000	Trace Theorems 0000	Green's functions	
Fundamental solution of Laplace operator					

• Let us consider the Laplace operator

 $(\mathcal{L}u)(x)$: = $-\Delta u(x)$ for $x \in \mathbb{R}^d$, d = 2, 3.

 The fundamental solution G(x, y) is the distributional solution of the PDE

$$-\Delta_y G(x,y) = \delta_0(y-x)$$
 for $x, y \in \mathbb{R}^d$.

• First put

$$G(x, y) = v(z)$$
, where $z = y - x$.

Hence solve

$$-\Delta v(z) = \delta_0(z), \ z \in \mathbb{R}^d.$$

• We apply the Fourier transformation and obtain

$$\hat{\mathbf{v}}(\xi)=rac{1}{(2\pi)^{rac{d}{2}}}rac{1}{|\xi|^2}\in\mathcal{S}'(\mathbb{R}^d)$$

Definition

For a distribution $T \in S'(\mathbb{R}^d)$, the Fourier transform is given by $\hat{T}(\varphi) = T(\hat{\varphi})$, for all $\varphi \in S(\mathbb{R}^d)$.

• Hence, we have to solve

$$\langle \hat{\mathbf{v}}, \varphi \rangle_{L^2(\mathbb{R}^d)} = \langle \mathbf{v}, \hat{\varphi} \rangle_{L^2(\mathbb{R}^d)}, \text{ for } \varphi \in \mathcal{S}(\mathbb{R}^d).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Useful definitions	Distributions 0000	Sobolev spaces	Trace Theorems 0000	Green's functions
3D case				

For d = 3.

• The fundamental solution is

$$G(x,y)=\frac{1}{4\pi}\frac{1}{|x-y|}, x,y\in\mathbb{R}^3.$$

- G(x, y) is continuous (C^{∞}) except when x = y.
- The fundamental solution is bounded at the infinity.

When x or
$$y \to \infty \Rightarrow G(x, y) \to 0$$
.

•
$$G(x, y) \notin L^2(\mathbb{R}^3)$$
. Consider $v(z) = \frac{1}{z}$
 $\|v(z)\|_{L^2(\mathbb{R}^3)} = \int_{-\infty}^{\infty} \frac{1}{z^2} dz = \underbrace{\int_{-\infty}^{0} \frac{1}{z^2} dz}_{\to \infty} + \underbrace{\int_{0}^{\infty} \frac{1}{z^2} dz}_{\to \infty} \to \infty$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Useful definitions	Distributions 0000	Sobolev spaces	Trace Theorems 0000	Green's functions ○○○○○○●○
2D case				

For d = 2.

• The fundamental solution is

$$G(x,y) = -rac{1}{2\pi}\log(|x-y|), x,y\in \mathbb{R}^2.$$

• $G(x, y) \in C^{\infty}$ except on x = y.

• The fundamental solution is unbounded at the infinity.

When x or
$$y \to \infty \Rightarrow U(x, y) \to \infty$$
.

• The problem of at the infinity is solved with the boundary conditions in the Green function.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◆

Useful definitions	Distributions	Sobolev spaces	Trace Theorems	Green's functions
00000000	0000		0000	○○○○○○○●
2D case				

The fundamental solution for the Helmolzt equation

 $-\Delta u(x) - 2ku(x) = 0$ for $x \in \mathbb{R}^d, k \in \mathbb{R}$,

is

• for *d* = 3

$$G_k(x,y)=rac{1}{4\pi}rac{e^{ik|x-y|}}{|x-y|}, x,y\in\mathbb{R}^3.$$

• for *d* = 2

$$G_k(x,y) = \frac{1}{2\pi}Y_0(k|x-y|), x, y \in \mathbb{R}^3,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

where Y_0 = second Bessel function of order zero.