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Direct methods vs iterative methods

Direct methods vs iterative methods

Full matrix of order n:
@ direct method: costs about %n3

e iterarive method: costs about n? for every iteration

Stefanie Miiller Iterative methods for linear systems: conjugate gradient and G



Conjugate gradient and Preconditioned conjugate gradient Gonjugatelgradient

Preconditioned conjugate gradient

conjugate gradient

@ Solve the system Ax = b, where A is a symmetric positive
definite matrix.

e We want to find x¥ recursively:

k+1

X =xk —|—akpk

o We define rk = b — Axk
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Conjugate gradient and Preconditioned conjugate gradient

Conjugate gradient
Preconditioned conjugate gradient

conjugate gradient

We define

1
o(y)=-y Ay—y’b

We have that:

x solution of Ax = b < x minimum point of $(y)

= We want to find the minimum point of the function ®, starting
from a point x°
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Conjugate gradient and Preconditioned conjugate gradient Gonjugatelgradient

Preconditioned conjugate gradient

conjugate gradient

Given the direction p¥, we can find ay that minimizes
O(xF1) = o (xK + akph)
We obtain

How to find pk?
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Conjugate gradient and Preconditioned conjugate gradient

Conjugate gradient
Preconditioned conjugate gradient

conjugate gradient

Definition

A solution x¥

p#0if

is said to be optimal with respect to a direction

d(xF) < d(xk + Ap) VAER

If x¥ is optimal w. r. t. all directions of a vector space V, x¥ is
said to be optimal w. r. t. V.

If x¥ is optimal with respect to p, p is orthogonal to r¥.
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Conjugate gradient and Preconditioned conjugate gradient Gonjugatelgradient

Preconditioned conjugate gradient

conjugate gradient

@ We look for directions which conserve the optimality of the
iterates.

@ Suppose to have x*T1 = xk + q, with x* optimal with respect
to a direction p (i.e. r* L p).

o Impose x¥*1 optimal with respect to p (i.e. r**1 L p).
We obtain that

p’Aq=0

That is, the directions are A-orthogonal, or A-conjugate.
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Conjugate gradient and Preconditioned conjugate gradient Gonjugatelgradient

Preconditioned conjugate gradient

conjugate gradient

How to find these directions?

o Set p? =10

o pktl =kl — B, pk for k =0,1, ...
where (3 is defined such that pjTApkJrl =0forj=0,1,....k
o We get for Sy:

(Apk)Trk—i-l

o= (Ap¥) T pk
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Conjugate gradient and Preconditioned conjugate gradient Gonjugatelgradient
Preconditioned conjugate gradient

conjugate gradient

Summarizing, we get the method of the conjugate gradient:
Choose x° , set r® =b — Ax? | p® =r°
Iterate over k=0,1, ...

kark

Wk = kaApk
KK = kK o, pk
Pl — ko, Ap
(Apk) pk+1

s (Apk) " pk

k+1 _ _k+1 k
P =1 — Okp
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Conjugate gradient and Preconditioned conjugate gradient Gonjugatelgradient
Preconditioned conjugate gradient

conjugate gradient

One can show that:
_ 3
¢ M= pkT Apk
[[e< 112
° = 2
B = T
k 1  k+1 1 Bk—1\,k | Bk—1 _k—1
o = —c= — — Ek=d =
Ar akr + (ak Qg1 )r + akflr )
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Conjugate gradient and Preconditioned conjugate gradient

Conjugate gradient
Preconditioned conjugate gradient

conjugate gradient

Theorem

Let A be a symmetric, positive definite matrix, n x n. The method
of conjugate gradient for the system Ax = b converges at most in
n steps. Moreover, the error € is orthogonal to p/ for
j=01,....,k—1 and

2ck A)—1
leX]la < %IIeOHA silnere @ = V(A -1
1+c Vra(A) +1

To have a better convergence, we want r2(A) small, where
— Amax(A
r2(A) = ||Allf| A2 ]l2 = 3z
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Conjugate gradient and Preconditioned conjugate gradient Cafimte mera

Preconditioned conjugate gradient

preconditioned conjugate gradient

We have seen that to have a faster convergence kp(A) = ’}(”L((A’f\))

should be as small as possible.
So if kp(A) >> 1, we can write the system in the form:

P :AP 2y = P~2b withy = P2x
ie. P72Ax = P 2b
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Conjugate gradient and Preconditioned conjugate gradient Cafimte mera

Preconditioned conjugate gradient

preconditioned conjugate gradient

We obtain the method of preconditioned conjugate gradient:
Given x?, set P =b — Ax? , 20 = P~ 1¢0  p0 =20
Iterate over k = 0,1, ...

kT k
pir
Ok = Tk
(Ap¥) " pk
XKL — k4, pk
Pl — ko, Ap
sz+l _ rk+1
5, = (Apk)TZk—H
k= pk T Apk
pktl = Zk+1 _ g, pk
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Conjugate gradient and Preconditioned conjugate gradient Cafimte mera

Preconditioned conjugate gradient

preconditioned conjugate gradient

@ The estimation of the errors is the same as in the CG,
substituting A with P~1A.

@ The implementation of PCG does not request to compute P>
or P73

@ Solving Pz
the CG.

@ We need to find a preconditioning matrix P such that:
k+1 _ pkt1

k+1 k+1

=r increases the computational cost w.r.t.

o It is easy to solve the linear system Pz =r
o ra(P~1A) should be near to 1, to decrease the number of
steps necessary to get a good convergence
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Iterative methods in Krylov’s spaces

iterative methods in Krylov's spaces

Consider the Richardson’s method xkT1 = xk 4 qrk
We have that:
k—1
v =]/ - aAN° (1)
j=0

So rk = pi (A0, where py(A) is a polynom in A of degree k.

Definition

We define the Krylov's space of order m as:
Km(A,v) = span {v, Av, ..., A’"_lv}

It is a subspace of the space generated by all vectors u € R” of the
form u = pm_1(A)v , where pp,_1 is a polynom in A of degree
<m-1.
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Iterative methods in Krylov’s spaces

iterative methods in Krylov's spaces

(1) implies that r* € Ky 1(A,r°)

We can observe that

where Zjl-fol ajrj is a polynom in A of degree < k — 1, and so
xKe Wy = {v:x0+y 'y € Kk(A,rO)}

That is, we are looking for a solution approximating x in the space
Wi
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Iterative methods in Krylov’s spaces

iterative methods in Krylov's spaces

In general, we have methods of the form:

x =x% + g _1(AN°

where gx_1(A) is a polynom choosen such that x* is the best
approximation of x in W.

Definition

Such methods are called Krylov's methods.

Property

Let A€ R™ v € R". The Krylov's subspace Kn(A,v) has
dimension m if and only if the degree of v with respect to A,
dega(v), is not smaller than m, being the degree of vw. r. t. A

the minimum degree of a monic non-zero polynomial p in A, for
which p(A)v = 0.
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Iterative methods in Krylov’s spaces

iterative methods in Krylov's spaces

Fixed m, we can compute an orthonormal basis for K,,(A,v) ,
using Arnoldi's algorithm, based on Gram-Schmidt's algoritm.
Applying Gram-Schmidt we would get:

\"}
V] =
[[v]2
k
Wi = Afv — Z hixvi
i—1
Wigi1
Vil = 7
T w2

where hj;'s are choosen imposing the orthogonalaty of wy 1.
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Iterative methods in Krylov’s spaces

iterative methods in Krylov's spaces

Applying Arnoldi’'s algorithm we get:

v
Ivll2

hi =v] Av i=1,2,...k

Vi

K
W1 = Avy — § hixv;

i—1

hiy1k = ||Wisl)2
W1

Vet = 77—

T w2

Stefanie Miiller Iterative methods for linear systems: conjugate gradient and G



Iterative methods in Krylov’s spaces

iterative methods in Krylov's spaces

Vi, ...,V build an orthonormal basis for K, (A, v).
Defining Vi, = (v1,...,Vm) , we have that
VIAV,, = Hn,
VI LAV, = A,

where H,, superior Hessenberg matrix with entries h;; from above.

The algorithm stops at an intermediate step kK < m if and only if
dega(vi) = k.

Now we can apply a Krylov's method of type

x = x% + g1 (A)°

to solve the system Ax = b.
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Iterative methods in Krylov’s spaces

iterative methods in Krylov's spaces

How to find x? We have two possibilities:

e xK € W, such that r¥ is orthogonal to every vector in
Ki(A,r0), that is

xk € W, such that v7 (b — Ax¥) = 0 Vv € Ki(A,r°)

= FOM (= Full Orthogonalization Method)

e xX € W such that it minimizes the Euclidean norm of the
residual ||r¥||2, that is

b — AxX|| = min ||b — Av|>
ve Wy

= GMRES (= Generalized Minimum RESiduals)

Stefanie Miiller Iterative methods for linear systems: conjugate gradient and G



GMRES

We build a basis for Ki (A, r°) with Arnoldi's algorithm, setting
0 .
V1= o and we find Vi = (vi, ..., vk).

We can compute x¥ = x0 + V,z¥.
How to choose zk?

< = x°+ vz

I‘k = I‘0 — AVka = VlHI‘OHQ — AVka
Vit = er|Irll2 — Akt

= Viga(er|rll2 — Aiz)

So choose z¥ such that ||||r°]|2e1 — Hiz||2 is minimum.
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GMRES

The GMRES stops at most after n iterations, giving the exat
solution.

Remark

GMRES solves at every step a minimum squares problems, which
requires many computations.

= GMRES useful if convergence is reached in a small number of
steps.
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Calderon preconditioning

Calderon preconditioning

o Let AfEM be the stiffness matrix obtained with the Galerkin
approximation.
° AEEM is a symmetric, positive definite matrix, hence it holds

HQ(ABEM) _ )\maX(AEEM)
h Amin(A/?EM)

It holds:

0 Amax(ABEM) < Ch?
o Amin(ABEM) > C'p3
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Calderon preconditioning

Calderon preconditioning

It follows that:

~1
ma(ABEM) < T
Note that if we halve the mesh size we get

ra(Ap") <2C

= R2(AE/E2M) ~ 2&2(AEEM)
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Calderon preconditioning

Calderon preconditioning

Problem:

@ we want a small mesh h

o we want a small conditioning number for ABEM

@ mesh decreases = conditioning number increases

= We need a preconditioning matrix!
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Calderon preconditioning

Calderon preconditioning

Recall the Calderon projection

Youy _ 31— Ko Vo Ypu
YNU Wo %/ + Kj) \ywu

where the Calderon projector

C:(;/—KO v0>
Wo 31+ K;

has the property C = C2.
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Calderon preconditioning

Calderon preconditioning

We get
VoWl = (51 + Ko)(51 — Ko) = 51 — K3
oo =5 05 0/ =y 0
WoVo = (51 + K)(51 — Kp) = 31— K’
oVo = (35 045 07" 4
e We know that xa(A) = /\:7:((:2))

We know that Ky , K are compact operators

The eigenvalues of a compact operator are finite or they are a
sequence converging to zero

Adding the identity to a compact operator, we can avoid that
)\min =0
This way the conditioning number can be controlled
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